2. W UNIVERSIDADE DE SAO PAULO
%; § EscoLaPoLITECNICA
DEPARTAMENTO DE ENGENHARIA MECANICA

PMC 581 : Projeto Mecanico li

Prof. Orientador: Marcos R. P. Barreto

SGADA em JAVA

v

>

André Galhego Arantes - NUSP: 569231
Séo Paulo, 17 de Dezembro de 1998

SCADA em Java - Pag. 2

1 OBJETIVO

2. SCADA CONVENGIONAL

3. SISTEMA PROPOSTO

|

3.1 Lmcuacem JAvA

3.2. VisAa Geral 50 SisTEMA PrOPOSTS
A. COMPONENTES

GO ™l

AL Pacxace BABOS

411 Glasss Dades

412 Ciasse Ponto

4.2, PACXAGE INTERFACES

.21 Ciasss Atualizacoes

4.22. Ciasse nsericoes

A.3. PACKAGE SENSORES

4.3.1 Visdo Goral

4.32 Glassa Sensorframe

4.3.3. Ciasso Sonsor

A.A. PACKAGE (1PS

441 Viséo Geral

4.A.2 Classa CLPframe

4.43.Classe CLP

A.5. PACXAGE ATUADORES

4.5.1 \isdo Geral

4.52 Classs Atuadorframe

4.53. Classs Atuador

4.8. PACKAGE GRAPHS

4.6.1 Visdo Geral

4.6.2 Package analas - Giasses PrincinalBartraph o PrincipalTrendGraph
4.6.3. Package Janelas - Classes JanelaBarGraph 8 JanelalTrendéraph

S8 B KRR NN Zxss mom EEE R

SCADA em Java - Péag. 3

4.8.4. Package Barraphs - Ciasse BarGraphPanc
4.8.5. Package BarGraphs - Classe BarGraph

4.6.6. Package Trend&raphs - Glasse TrendéraphPanel
4.6.7. Package TrendGraphs - Giasse TrendGraph

5. CONSIDERAGOES FINAIS

6. ESTRUTURA DOS CODIGOS

6.1 Classa Bades
6.2. Glasse Ponto
6.3. Classe Atualizacoss
6.4. Classa nsericoss
6.5. Giasse Sansor
§.6. Clases Sensorframe
6.7 Classa BLP
6.8. Bissse C1PFrame
6.9. Ciasse Atuador
6.10. Classs Atuaderframe
.11 Glasse PrincipalBarGraph
8.12. Ciassa JanelaBarGraph
6.13. Classs BarfiraphPanel
6.14. Classo BarGraph
8.15. Glasse PrincipalTrendGraph
6.16. Glasse JanelaTrendGraph
6.17. Classe TrendGraphPanel
0.13. Classs TrendGraph

7. BIBLIOGRAFIA

SREEREETToETE8B=2E 8 B BB =B

-

SCADA em Java - Pag. 4

1 Objetive

O presente projeto tem como objetivo a inclus8o de uma nova estrutura para o
modelo tradicional de SCADA (Supervisory Control and Data Acquisition),
infroduzindo novas tecnologias e tendéncias que estio surgindo. Este projeto visa a
implementagdo de um SCADA utilizando componentes que estio sendo
desenvolvidos e que possuem o sistema operacional Java OS em seus firmware.
Estes componentes ainda ndo estdo disponiveis comerciaimente, porém com este
projeto espera-se estar adiantado quando os componentes estiverem disponiveis
para plena utitizag@o. Assim, serdo feitos modelos em soffware dos mesmos para
interagirem com o sistema desenvolvido, de modo gue a substituicio destes pelos
itens fisicos se dé de uma maneira suave e sem grandes disparidades.

O documento ira comparar o sistema convencional com o proposto, assim
como explicar um pouco da linguagem Java e suas funcionalidades de maior
relevancia para o projeto, e a descrigdo do funcionamento dos componentes do
sistema como um todo.

SCADA em Java - Pag. 5

2. Scada Convencional

Usando uma definicdo geral, SCADA (Supervisory control and data acquisition)
€ um sistema de medida e controle que consiste em sensores para aquisigio de
estados e geracdo dos sinais correspondentes, CLP's que captam estes sinais para
processar a légica do sistema e gerar sinais de controle para os atuadores, € uma
estagdo central de acumulo de dados com terminais para monitoragio dos
processos. Um esquema simples para o entendimento desta definicio se encontra
na figura 2.1.

I—Sen:sor } > “{1 .'

[He———]| [=
| | |Banco de | ! 3 |

| Atuador < . CLP Nl |
Estacgio Terminal Terminal
Central

Figura 2.1. Esquema simples de um SCADA atual

O funcionamento deste sistema se da da seguinte forma: os sensores possuem
valores e disponibilizam estas informagdes para a CLP através de protocolos de
camadas baixas de comunicagdo. Esta CLP processa estas informacbes e gera
sinais de controle para modificar os valores dos atuadores, de modo a produzir o
comportamento desejado do sistema. Os dados provenientes dos sensores também
sdo traduzidos de uma forma que uma estagdo central (um computador) possa
armazena-los em um banco de dados que contém as informacdes de todos os
sensores. Cada terminal que esteja interessado na monitoragcdo dos sensores,
atualiza seus dados através de polling, ou seja, com uma fregiiéncia pré-definida,
acessam o banco de dados da estag@o central e coletam o0 dados referente aos
sensores que deseja. Com estes novos dados, podem atualizar seus graficos e
disponibilizar as informages aos operadores.

A estagéo central e os terminais estdo ligados geralmente através de uma LAN
(Local Area Network), e é preciso que haja uma compatibilidade entre os aplicativos

SCADA em Java - P4g. 6

dos terminais e do banco de dados gerado pela estagiio central. Logo, quaisquer
desenvolvimento de um novo sistema para esta monitoracdo deve levar em conta as
plataformas existentes.

Quando um novo sensor precisa ser instaiado, é preciso adquirir mais um placa
para a CLP, reprograma-la para atualizar a l6gica do processo, assim como
reestruturar o banco de dados da estagéio central.

E claro que um SCADA envolve mais do que foi descrito acima, porém as
informacdes s&o suficientes para que se entenda a proposta que sera feita, assim
como comparacdes mais especificas poderdo ser feitas. Com isto, os pontos
principais a serem ressaltados sdo:

* niveis de protocolos diferentes na estrutura, necessitando trabalhar os
mesmos para garantir a disponibilizagdo dos dados para todos os
componentes;

* alta dedicag&o dos processadores dos terminais para efetuar o pofling

* necessidade da compatibilidade dos sistemas de monitoragdo entre si e o
banco de dados da estagdo central:

» alteracéo fisica da CLP para cada sensor ou atuador instalado.

SCADA em Java - Pag.7

3. Sistema Proposto

Uma vez que foi descrito o sistema convencional para a implementacio de um
SCADA, sera agora descrita a proposta de mudanca. Primeiramente, para um maior
entendimento do projeto, sera descrita sucintamente a linguagem Java, ressaltando
os pontos principais relevantes para o esclarecimento da funcionalidade do sistema.

3.1 Linguagem Java

A linguagem Java foi desenvoivida com a intengdo de ser um sistema
faciimente programéavel sem muito treinamento profundo, e que alavancasse os
padrdes atuais de uso, ou seja, visando trocar programas 'gordos’ e de arquitetura
rigida por pequenos aplicativos especificos para determinadas tarefas. Ele foi
projetado para suportar aplicagtes em rede, e é neste ambiente onde demonstra se
usufrui mais intensamente de seus recurso.

Sua logica é orientada a objetos, que visam representar algo real, com
caracteristicas e comporiamento. Um objeto possui varidveis, que indicam seu
estado, e métodos, que s&o as Gnicas maneiras de alterar suas varidveis, permitindo
definir comportamentos do objeto. As variaveis formam o niicleo do objeto, enquanto
os métodos circundam o nucleo, isolando-o de outros objetos no programa. Os
objetos de software interagem e se comunicam enfre si através de mensagens, que
contém os seguintes elementos:

» objeto para o qual a mensagem é enderecada
s nome do método a ser executado

e parametros requeridos pelo método

Assim, é possivel perceber que fica mais simples trabalhar no desenvolvimento
de sistemas, uma vez que 0 mesmo é formado por objetos bem definidos. E possivel
ter uma visdo global do sistema, percebendo a interagéo entre os objetos, assim

SCADA em Java - P4g. 8

como distribuir meihor o trabalho de desenvolvimento, quando for necessario
desenvolver a arquitetura interna de cada objeto.
O Java possui as seguintes funcionalidades, que s30 essenciais para o projeto:

¢ Muitiplataforma - a linguagem foi desenvolvida de maneira que o codigo
gerado pudesse ser interpretado por quaisquer maquinas. A maneira
encontrada para a realizagéo disto foi a divisio da geragdo de codigos em
duas etapas: geracéio de byfecodes e interpretagdo em real-time. Para o
melhor entendimento, é preciso antes fatar sobre a Java Virtual Machine. A
JVM é uma idealizagdo de méquina, para qual os programas irdo ser
compilados. Esta maquina é Gnica, entdio sempre os codigos que forem
escritos, independente de qual plataforma os estdio gerando, serdo
compilados e formardo os byfecodes, que sdo os codigos a serem
interpretados pela JVM. Cada plataforma deve possuir um interpretador
Java dedicado a esta plataforma. Quando de desejar rodar um programa,
os bytecodes serdo interpretados em tempo real neste interpretador. Por
exemplo: uma plataforma Machintosh possui um “interpretador Java para
Machintosh" e uma UNLIX, possui um "interpretador Java para UNIX". Assim,
se um programa for feito em um PC com Windows, ao se compilar, serdo
gerados arquivos contendo os bytecodes. Estes arquivos podem ser
distribuidos para os usuérios de Machintosh ou UNIX, e quando forem rodar
O programa, os respectivos interpretadores irdo gerar os comandos para
suas maquinas em tempo real.

* RMI (Remote Method Invocation) - é o maneira pela qual os objetos em
Java conseguem comunicar entre si remotamente. Com isto, é possivel gue
se faga um sistema distribuido e a comunicagdo dos componentes é feita
remotamente, através de protocoios de nivel mais alto (ex TCP/IP).
Juntamente com a caracteristica multiplataforma da linguagem, este
conceito faz com que se possa desenvolver um sistema a ser distribuido em
uma rede sem levar em conta quais plataformas estdo envolvidas na
mesma.

SCADA em Java - Pag. 9

» Java Beans - por ser uma linguagem orientada a objetos, o Java permite
que se reutilizem os mesmos para aplicagdo distintas. Uma vez que o
objeto foi devidamente encapsulado pelos seus métodos, é possivel que o
codigo possa ser reutilizado e o objeto ird manter sempre o mesmo
comportamento. Muitos destes objetos s@o graficos, e possuem
caracteristicas visiveis, como tamanho, cores, etc... Um Bean é um objeto
que pode ser considerado como um componente grafico, que pode ser
visualizado e ter suas caracteristicas modificadas visuaimente durante a
etapa de programagdo. Um exemplo simples pode ser o de um botdo, que
em um compilador visual, pode ser arrastado de um palheta de ferramentas
até a janela que se esta construindo, e pode ter suas caracteristicas como
cor, tamanho, legenda, alterados durante a modelagem da janela.

Com estas exposigdes, agora o sistema proposto pode ser perfeitamente
entendido, assim como suas caracteristicas desejadas poderdo ser asseguradas.

32 Visdo Geral do Sistema Preposte

O sistema proposto consiste basicamente da integragdo de novos
componentes que vém sido desenvolvidos, 0s quais possuem um sistema
operacionai denominado Java OS (que estaria presente possivelmente em
firmware), e que podem ser utilizados de maneira a se aproveitar todos os beneficios
que a linguagem Java pode oferecer. Como estes componentes ndc estéio ainda
disponiveis comercialmente, foram idealizados objetos que possuem caracteristicas
e compoitamento o mais proéximo possivel com a realidade. Assim, uma posterior
substituicdo de um objeto l6gico um Java por um componente real com
caracteristicas em Java OS néo tera grandes discrepancias.

Um esquema geral da integragdo dos componentes pode ser visto conforme a
figura abaixo:

SCADA em Java - Pag. 10

} Sensor | Atuador |
T = . it
Fsaea‘a; | | I
_Seiee | i |
Eui. oloi.'_ | Z'!
Servidor CLP | s | e
calfiege -
[] [L
Terminal Terminal

Figura 3.2.1. Esquema geral do sistema proposto

Basicamente podemos pensar em uma rede comum, onde ha um servidor para
0 gerenciamento da mesma e computadores ligados ao backbone compartilhando as
informacdes entre si. Esta comunicagdo €& possivel pois cada um possui um
enderego, gerenciado pelo servidor, @ usam de protocolos passar as informagdes.
Agora, podemos pensar nos componentes que possuem Java OS também ligados
nesta rede. A insergdo deste equipamento se faz de forma similar & de um
computador: seria conectado fisicamente a rede através de um hub, e teria seu
endereco registrado no servidor. A partir deste momento, seria possivel detectar a
presenga do mesmo na rede, pois ele j& possui um nivel de protocolo que permite a
integragdo com os computadores ligados ao backbone.

Estes componentes podem ser considerados como objetos Java, devido ao seu
firmware, e a comunicagdo com eles seria feita da mesma forma que foi descrito no
item anterior, conforme ilustrado na figura 3.1. O grande ponto esta na forma e em
quais situagbes que entram em contato. Cada componente se registra no
equipamento desejado, e este s6 mandara informagdes para os participantes de sua
lista interna de registros, através do RMI. Por exemplo: quando um computador esté
interessado em obter a leitura de um sensor, ele entra em contato com o mesmo e
se registra na lista que o sensor possui. Quando fosse necessério informar uma
alteragdo por parte deste sensor, ele acessaria somente quem uma vez ja se
registrou nele e atualizaria por conta propria os dados que o computador possui.
Pode-se ressaltar que neste caso os terminais podem voltar seu processamento

SCADA em Java - Pag. 11

para outros fins que ndo a atualizagio, pois sdo passivos quando os sensores
alteram seus dados.

O mesmo pode se estender aos atuadores: as CLP's se registram nos
sensores relevantes a sua légica e nos atuadores, alterando os dados deste quando
conveniente. Convém ressaltar que estas CLP's na verdade se diferem das atuais.
Podem possuir apenas uma placa de entrada e saida e se comunicam através de
protocolos de camadas mais altas dos que os atualmente utilizados. Na verdade
poderiam até ser considerados como computadores que estdo com a logica de
controle do sistema armazenada.

Como pode ser visto, podemos ver diferencas importantes entre os dois tipos
de SCADA mostrados. Em primeiro lugar, a estagio ceniral desaparece, e a
divulgagdo dos dados se faz de forma mais direta. Ha também um aumento da
confiabilidade do sistema, uma vez que no SCADA convencional uma avaria nesta
acarretaria na falta de monitoracdo em todos os terminais, e no sistema proposto
estes estdo completamente independentes. Pode-se notar também uma menor
intensidade de processamento e uso da rede por parte dos terminais, uma vez que
n&o se precisa mais de polling e as informacgéo virdo por parte dos sensores, que
alteram diretamente os dados existentes, e somente quando necessario. A
caracteristica da linguagem Java de ser multiplataforma e podermos reutilizar
objetos ja definidos aumenta a flexibilidade do sistema e menos complexidade na
implementagdo da rede de comunicagdo entre os componentes. Vale a pena
também mencionar que a inser¢éo de um novo componente se faz de uma maneira
mais simples, e a escalabilidade do sistema estd assegurada. Resumindo, o novo
sistema possui 0s seguintes pontos:

¢ uniformidade no nivel de protocolo ao longo de todo o sistema;

¢ baixa dedicagio dos processadores dos terminais;

e quaisquer modifica¢do no sistema pode ser feita sem a necessidade de se
levar em conta as plataformas envolvidas;

* ainsercdo de um novo comperiente na rede so altera a ldgica do sistema;

e 0s componentes l6gicos desenvolvidos podem ser faciimente reutilizaveis e
graficamente modelaveis.

SCADA em Java - Pag. 12

4. Componentes

Uma vez esclarecida a visdo geral do processo, 0s componentes serdo
detathados para um melhor entendimento de seu funcionamento e da interagdo
entre todos no sistema. As classes foram divididas em packages, que & uma
maneira de dizer que vérias classes pertencem a um certo agrupamento devido a
semeihanga de fungdes. Os packages definidos séo os seguintes:

* dados: classes que nao possuem métodos, apenas agrupam tipos de
dados que irdo ser passados remotamente entre os componentes do
sistema

e interfaces: sfo as interfaces que indicam quais métodos poderdo ser
utilizados remotamente pela classe que o implementar. Assim, se uma
classe que possui 4 métodos implementar uma interface remota que possui
1 método, s6 este podera ser ativado remotamente, e os outros 3, somente

localmente

+ sensores: classes que determinam o objeto Iégico sensor e sua interface
grafica

* clps: classes que determinam o objeto légico CLP e sua interface grafica

» atuadores: classes que determinam o objeto I6gico atuador e sua interface
grafica

» graphs: package constituido por mais trés packages:

¢ BarGraphs: classes que determinam o objeto légico BarGraph e
sua interface grafica em Bean

e TrendGraphs: classes que determinam o objeto légico
TrendrGraph e sua interface gréfica em Bean

SCADA em Java - Pag. 13

» Janelas: classes que servirio como hospedeiras dos Beans
BarGraph e TrendGraph

» borland: esta package contém outras embutidas e basicamente conta com
duas classes: XYLayout e XYConstraints. Estas duas classes foram
desenvolvidas pela Borland Intemational, inc., e fazem parte do conjunto de
classes que compdem o produto JBuilder™. Estas sdo utilizadas em
conjunto para se poder usar coordenadas absolutas em janelas para
acrescentar componentes. A primeira indica que o layout aceitara
cooredenadas absolutas, e o segundo serd usado para acrescentar um
componente em uma determinada posicéo (x,y) e podendo utilizar um
espago (largura, altura) na janela. Como provém de um pacote fechado, ndo
sera explicada junto com os outros componentes do projeto, porém na
listagem que esté no final do documento pode-se ter idéia de como utiliza-
las.

A seguir, serdo descritos os funcicnamentos das classes que compdem as
packages, para se esclarecer o comportamento de cada um e se poder ter uma
melhor idéia da interagéo entre os componentes no sistema. Nestas descricdes ndo
serdo incluidas as linhas de codigo das classes, pois estas se encontram na integra
no final do documento, e possuem comentarios bem detalhados para se poder
acompanhar o raciocinic da estrutura. Assim, as descricdes que serdo feitas
explicam melhor a dinadmica de cada objeto e quaisquer ddvida guanto a
implementacéo da logica pode ser tirada na listagem em anexo.

SCADA em Java - Pag. 14

A1 Package dados

A.11 Ciasss Dados

A classe Dados representa um agrupamento de varidveis que serdo passadas

entre objetos para efetuar a inscrigio na lista de componentes. Assim, uma CLP ira

passar um Dados para um sensor e este podera efetuar sua inscrigio na lista que

possui. Esta classe & constituida petos seguintes tipos de dados:

Acao: contera a informag&o do objeto que dira se esta querendo se registrar
ou se remover da lista do objeto destinatario.

Componente: indica 0 nome do objeto que esta mandando as informagtes
para o registro

TipoAtualizacao: indica se o objeto cliente ira ser atualizado orientado a
eventos ou por uma taxa de amostragem

Intervalo: corresponde ao intervaio de tempo desejado pelo componente
que ira ser atualizado por taxa de amostragem

4.12. Ctasse Ponto

Assim como a classe Dados, esta classe somente agrupa dados a serem

passados, porém neste caso os dados dizem respeito ao valor que o sensor esta

passando para os componentes. Suas variaveis sio:

*

ValorMaximo: valor numérico do méximo valor atingido pelo componente,
em sua unidade coerente

ValorMinimo: valor numérico do minimo valor atingido pelo componente, em
sua unidade coerente

ValorAtual: valor numérico do valor atual que define o estado do
componente, em sua unidade coerente

Tempo: horario correspondente ao ValorAtual que esté sendo passado para
0 componente requisitante

NomeComponente: nome que o componente que esta passando os dados é

reconhecido na rede

SCADA em Java - Pag. 15

42 Package interfaces

421 Ciasse Atualizacoes

A interface Afualizacbes define o método Atualizar como remoto. Este método
sera utilizado por componentes que deseiem que tenha seus dados atualizados
remotamente por outro componente. Assim, o componente que implementar esta
interface podera receber uma classe do tipo Ponto, para poder atualizar seus dados,
e retornara uma mensagem para 0 componente que o atualizou, dando continuidade
a0 processo.

4.22 Ciasse inscricoss

A interface Inscricoes define o método Alteralnscricao como remoto. Este
metodo sera utilizado por componentes que possuem listas de componentes ligados
nele, e através deste poderédo inserir ou retirar suas inscricbes desta lista.

O servidor (o dono da lista) recebera os dados do cliente empacotados pela
classe Dados, podendo efetuar a insergéo do componente na lista, assim como sua
identificagdo e retirada da mesma, e retornara os seus valores ao cliente pela
classes Ponto, que sera utilizada pelo cliente para atualizar seu valor de imediato.

SCADA em Java - Péag. 16

4.3 Package sensorss

4.3.1 Visio Goral

Os sensores sdo componentes que estio efetivamente monitorando os eventos
reais que estdo ocorrendo e assumindo valores para representar estes eventos.
Podem tanto ser digitais, onde fornecem informagdes com apenas 2 valores
distintos, como analogicos, disponibitizando valores intermediarios dentro de um
intervalo.

Os sensores digitais séo utilizados para monitoragdo de mudanga de estados.
Ou seja, somente iro enviar informagbes aos componentes neles inscritos quando
seu valor for alterado, atualizando, entdo, os dados mostrados nos terminais
supervisores. Ja os sensores anal6gicos poderfio ser usados em duas aplicagdes
distintas. Podem atualizar os dados sobre seu valor com uma taxa de amostragem
preé definida, independente dos eventos que estéo ocorrendo. Isto serviria para uma
monitoracdo que vise a visualizacdo do comportamento do sensor em um
determinado periodo de tempo. Outra forma de se utilizar este tipo de sensor seria
para monitorag&o de variagGes. Assim como o sensor digital, s6 atualizaria os dados
quando registrasse uma alteragdo do seu valor dentro de uma margem pré
estabelecida, porém neste caso seria necessério também informar o novo valor
atingido, ou 0 quanto o valor mudou.

Para o projeto, idealizou-se o sensor como um elemento que possui seu valor
alterado por um agente externo, possui um fista de componentes registrados que é
modificada pelos mesmos, e que s6 & ativo no que se diz respeito ao broadcasting
do seu valor atual, ou seja, na atualizagéo ativa dos dados dos componentes nele
interessados. Para simular este agente externo, interface grafica possui campos
onde pode-se entrar manuaimente com os valores desejados para simular a rea¢3o
do sensor.

SCADA em Java - Pag. 17

4.32 (Classs Sensorframe

Esta classe € responsavel pela interface grafica do Sensor. Os métodos que
definem a logica do controle da lista de interessados, assim como suas atualizagdo
estdo na classe Sensor. Ambas classes sdo inicializadas em cascata e trabalham
em paralelo. Ento, a separacdo se da apenas no armazenamento dos arquivos,
mas ambos est&o ligados logicamente e seu funcionamento se da como se fossem
uma so, ficando transparente para o usuario esta separagso.

Uma vez inicializada, esta classe fica com a seguinte aparéncia:

F2% \\AGA_PENTIUM\Sensorl PR [
Valor Atual: IEU Valor Maximo: |80

Atualizar Valores i Valor Kinimo: |0

WAGA_PENTIUMISensor! na redell ~]
VWAGA_PENTIUMBarGraph1 registrado na posicao €
A resposta foi: Atualizaggo feita.

Jl | g;J:J

Figura 4.3.2.1. Interface grafica do Sensor

Como se poder ver, os valores maximo, minimo e atual do sensor podem ser
entrados pelo usuario para simular o sensor. Com isto, utilizando 0 mesmo cédigo,
podem ser abertos varios sensores, e se estipular um fundo de escala diferente,
assim como o comportamento na mudanca dos valores atuais.

A area de texto indica mensagens que sfo impressas pelo Sensor e recebidas
peios componentes que entram em contato com o mesmo, para se ter uma
monitoracao dos processos que estdo acontecendo.

O botéo serve para atualizar os componentes que se registraram no sensor e
estéo interessados em ser atualizados por eventos. Assim, uma vez digitado o valor
que se deseja nos campos, ao se apertar o botfo, sera ativada a classe Sensor, e
somente a lista de componentes orientados a evento ser&o atualizados. Os outros,
orientados a taxa de amostragem, estdo sendo atualizados em background
diretamente pela classe Sensor.

SCADA em Java - Pag. 18

4.33. Giasse Sensor

A classe Sensor contém a légica principal de registros de componentes e envio
de dados, assim como inicializa a classe SensorFrame, que é a sua GUI (Graphic
User Interface).

Ao se iniciar esta classe, primeiramente o sensor sera registrado na rede com
um determinado nome, recuperado da entrada peio prompt, para ser identificado.
Este nome possui a localizacdo do servidor onde se encontra. Por exemplo:
entrando-se com o nome "//143.123.32.145/Sensor1" indica que o sensor vai ser
reconhecido como "Sensor1" no servidor que possui o 1P 143.123.32.145. Assim, 0
sensor esta apto a ser procurado na rede para se poder efetuar inscricbes e
remogdes em sua lista de interessados, assim como atualizar os dados dos
mesmos.

O sensor, implementa a interface Inscricoes, e utiliza o método Alferalnscricao
para que os componentes possam se inscrever remotamente no mesmo. O definicio
deste método é a seguinte:

public Ponto Alteralnscricao (Dados d)

Assim, o componente interessado em receber informagdes do sensor passa
seus dados através da classe Dados, e recebe imediatamente o estado atual do
sensor definido pela classe Ponto. Para efetuar a inscricdo, o sensor possui duas
listas que podera incluir o componente: uma para orientados a evento, que seréo
atualizados ao se apertar o boi&o da interface gréfica; e outra para orientados a
amostragem, que serdo atualizados por threads.

Esta atualizagio ocorre da seguinte forma: um thread é um processo que apds
iniciado, ocorre em background, e podem ser instanciados vérios ao mesmo tempo,
sendo um distinto do outro através dos nomes que recebem. Assim, nesta classe,
para cada componente gue se inscreve na lista orientada a amostragem, sera
iniciado um thread que recebera o nome deste proprio componente e tera um taxa
de atualizagdo prépria, conforme definida pela classe Ponto passada. Quando se
deseja retirar o componente da lista, procura-se o thread que possui 0 nome do
componente que requisitou a retirada, e se encerra a sua execugéo.

SCADA em Java - Pag. 19

Desta maneira, o sensor pode agrupar componentes atualizados juntamente
pelo acionamento do botéo, ou por taxas de amostragem distintas, rodando em
paralelo e que ndo interferem um no funcionamento do outro.

Para que o sensor consiga atualizar os componentes nele inscritos, estes
devem implementar a interface Atualizacoes, pois assim possuirdo o método
Atualizar e o sensor podera aciona-lo remotamente e passar os dados necessarios

para a atualizacdo.

SCADA em Java - Pag. 20

A.A. Package cips

4A1 Visdo Geral

No sistema proposto, utilizamos a nomenciatura CLP para um componente que
estaria com a logica de controle do sistema armazenada, e que distribui ordens de
comando para os atuadores para assegurar o comportamento previsto do processo.
Mas este componente se difere das CLP's atuais, devido ao fato de poderem possuir
apenas uma placa de entrada e saida para controlar intimeros componentes, e ndo
utilizarem a linguagem L para a construgéio de sua lgica interna. Conforme ja dito,
elas podem ser consideradas como computadores que possuem a logica de controle
definida por programacgao em nivel mais alto.

Para o efetivo controle do processo, cada CLP's (no caso de se haver mais de
uma) se registra somente nos sensores que possuem os dados necessarios para o
processamento das informagdes. Sdo aproveitados os mesmos os métodos que
estao sendo utilizados peios outros componentes, uma vez que a informagdo que
necessita do sensor € do mesmo tipo (valores maximo e minimos, e atual). E
também preciso que as CLP's se registrem nos atuadores, indicando que irdo
mandar sinais para a atualizacédo dos valores dos mesmos.

Assim, com as informagbes disponibilizadas pelos sensores em que estio
registradas, as CLP's processam os dados e geram sinais de controle para os
atuadores. Conceitualmente, & isto o que se faz atualmente, porém o novo método
proposto oferece uma interface menos complexa e mais flexivel.

A CLP que sera utilizada neste projeto foi modelada de uma maneira genérica,
podendo a sua légica de controle ser salterada sem interferir no resto do
funcionamento da mesma, uma vez que ela foi completamente isolada em um
método Unico. Em um primeiro momento, esta CLP alimenta uma lista que contém
pares atuadores-sensores, ou seja, quais atuadores serdo afetados quando
determinado sensor mudar de estado. Uma vez feito isto, a CLP se registra nos
sensores que sao de interesse na continuidade de sua l6gica de controle. A partir
deste ponto, ela recebera os dados dos sensores e ira atualizando os estados
desejados dos atuadores.

SCADA em Java - Pag. 21

Toda esta parte de inscricdo e atualizagdo ndo sera afetada pelo tipo de
controle que a CPL ird executar, e pode-se utilizar o codigo gerai, por exemplo, para
controle Pl ou para PID, bastando modificar apenas o método responsavel pela

"transformacg@o” das entradas dos valores dos sensores em saidas para os
atuadores.

4.42. Glasss CLPframe

Assim como o sensor, a CLP possui uma GUI para coordenar as suas
atividades, que possui o seguinte aspecto:

F=% \\AGA_PENTIUM\CLP1 =] E3

MNome do Atuador; l_F’ENTlUMWUGdﬂﬂ Registrar Atuador

Sensar Reponsavel | _PENTIUM\Sensort Remover Aluadar

JMCLP1 na redslt
WAGA PENTIUMICLP1 conectado ac WAGA_PENTIUMWAuador
WAGA PENTIUMICLPY conectado ao WAGA_PENTIUM\Sensor?.

4 . b

Mome da Bensor lﬁ.Gﬂ_PENTIUMISanoﬂ Taxa: |u

Registrar CLP no Sensor I Remover CLP do Sensor 1

Figura 4.4.2.1. Interface grafica da CLP

Os campos de cima serdo utilizados para alimentar a lista "atuadores x
sensores”. Os nomes a serem entrados serdo 0s nomes que 0s componentes s30
conhecidos na rede, e nesta etapa a CLP ira entrar em contato com o atuador para
receber os seus valores maximos e minimo, para poder utilizar em sua logica de
controle. Neste momento a CLP ainda ndo entrou em contato com os senscres.

Na segunda etapa, que corresponde a utilizagdo dos campos localizados na
parte de baixo da janela, a CLP ira localizar o sensor desejado e se inscrever em
sua lista. O campo "Taxa" sera usado para entrar com o intervalo de amostragem

SCADA em Java - Pag. 22

para a atualizagdo dos dados. Caso se entre com zero, estara indicando que deseja
ser atualizada por eventos.

A area central sera utilizada para imprimir mensagens da prépria CLP, assim
como mensagens recebidas pelos atuadores e sensores, para se ter idéia do
andamento do processo que esta ocorrendo ao fundo.

AA3. Classs C1P

Nesta classe esta o cerne do funcionamento da CLP. Assim como o sensor, o
primeiro passo executado € a CLP se registrar na rede para poder ser encontrado
para as atualizagdes desejadas. Uma vez feito isto, sera feita a alimentagdo da lista
"atuadores x sensores" conforme explicado no item anterior, assim como a inscrigdo
nos sensores. Como esta classe implementa a interface Afualizacoes, podera
atualizada remotamente pelo sensor, para receber os dados necessarios para dar
continuidade a sua légica de controle. Uma vez recebidos os dados dos sensores, é
percorrida a lista de atuadores para encontrar quais serdo afetados por esta
mudanga. Depois, passam-se os valores maximo e minimo do atuador e os valores
maximo, minimo e atual do sensor. Isto basta para que possa se calcuiar o valor a
ser atingido pelo atuador.

Como neste ponto de desenvolvimento do projeto néo é possivel atribuir uma
dinamica ao sistema, devido & falta dos componentes reais, ndo foi desenvolvida
uma ldgica de controle muito rebuscada. O calculo feito considerou apenas uma facil
visualizagdo do funcionamento do controle. Assim, a logica apenas consiste em
conservar a posigao relativa do sensor para o atuador. Qu seja, se ¢ sensor esta a
40% do seu valor total, assim deve ficar o atuador. Novamente é frisado que apesar
da légica ser simples, a modificagdo por uma outra mais rebuscada esta
assegurada, devido ao isolamento do métode do controle. Definindo que este
precisa apenas das entradas e saidas mencionadas, sua generalidade esta também
assegurada.

SCADA em Java - Pag. 23

A.5. Package atuadorss

4.5.1 Visao Geral

Os atuadores s@o elementos que alteram seus valores de acordo com ordens
de comando gque recebem das CLP's, e com isto modificam ¢ comportamento do
sistema onde estio inseridos. Eles podem ser tanto digitais como analdgicos, porém
possuem o mesmo tipo de método, que diz apenas o valor que deve assumir,
deixando a preocupacéo da variedade de valores validos para a CLP.

Na modelagem, o atuador, tal qual na realidade, é um elemento completamente
passivo. A CLP entrard em contato com o mesmo para obter seus valores maximo e
minimos e se encarregara de atualizar 0 seu valor atual para garantir sua logica de
controle. A Unica diferenga que poderd ocorrer entre os diversos atuadores serd a
gama de valores que podem assumir. Como a interface grafica possui campos onde
0 usuario pode entrar com os valores maximo e minimo do atuador, pode-se utilizar
0 mesmo codige e abrir varios sensores ac mesmo tempo, e atribuindo-se valores
diferentes, pode-se simular um sistema com vérios atuadores distintos
instantaneamente.

452, Glasse Atuadorframe

Conforme visto acima, a interface grafica de um atuador servira apenas para
entrar com seus valores maximo e minimo, assim como verificar seu estado atual.
Para uma melhor percep¢éo visual da mudanga de comportamento do atuador,
utilizou-se a construgdo de um grafico de barra que atinge a altura correspondente
ao valor desejado com a cor vermelha, contrastando com o fundo branco. Seu
formato se encontra na figura 4.5.2.1. Verifica-se que o valor atual é demostrado
pela altura que o grafico representa, assim como ¢ seu valor por escrito € horario
que a CLP mandou o comando para o mesmo. Ao ser inicializado, o atuador tera o
valor minimo de "0" e méaximo de "100", valor atual "0" e horario de atualizacéo
"00:00:00".

SCADA em Java - Pag. 24

ey \WAGA_PENTIUM\Atuador I [=] E3
Maximo: 1000 ———

_ 50.0 45 14:04:37
Minimo: 0.0 i

Valor Minimo: Valor Méximo:
0.0 | 100.0
WAGA_PENTIUMAtuador na redell =

WAGA_PENTIUMAtuadort em par com WAG:

J _

Figura 4.5.2.1.Interface grafica do Atuador

Ao se modificar os valores do campo, quando a CLP se registrar no atuador,
ela encarregara de atualizar sua construgdo para refletir estes valores desejados.
Quando a CLP retirar o atuador de sua lista, o valores de inicializagdo voltaréo.
Assim, fica facil identificar quando o atuador esta inativo.

453 Ctasss Atuador

A classe Atuador implementa a interface Inscricoes e assim a CLP pode se |
inscrever remotamente. A inscricdo aqui € diferente da que ocorre no sensor. Uma
vez que o atuador € um elemento passivo e ndo ira fazer broadcasting de suas
informagdes, a inscrigdo propriamente dita se resume apenas em informar ao
componente que nele se inscreveu seus valores maximo e minimo.

Esta classe também implementa a interface Atualizacoes, para poder ter seus
dados atualizados remotamente pela CLP.

SCADA em Java - Pag. 26

A8 Package graphs

A61 Visde Geral

Para a monitoracdo dos sensores serdo utilizados componentes graficos
distintos em seu uso, e estdo agrupados nesta package. Um deste componentes é o
Trend Graph (gréfico de tendéncias), que plota os um namero determinado de
vaiores recebidos dos sensores analégicos em um determinado intervalo de tempo,
mostrando a curva de valores que o componente assumiu durante este intervalo. O
outro componente € o Bar Graph (grafico de barras), que mostra apenas um valor
instantaneo do sensor, assim como o horério de sua Ultima atualizagéo

Estes dois componentes foram desenvolvidos para serem usado como Beans,
conforme descrito no item 3.1. Assim, s8o considerado como componentes graficos
a serem incluidos no desenvolvimento de fayouts. Isto faz com que seja facil o
modelamento de janelas de monitoramento de acordo com o aplicacdo desejada.
Pode-se acrescentar mais de um grafico por janela, sendo apenas o espaco o fator
delimitante. Como sdo componentes graficos a serem inseridos em janelas, ndo
podem ser inicializados isoladamente, portanto, foram feitas classes que estdo na
package Janelas, que simplesmente servem para abrigar estes Beans e poderem
rodar nas janelas e interagir com o resto do sistema.

SCADA em Java - Pag. 26

A52 Package Janelas - Classes PrincipalBartraph 6 PrincipalTrendGraph

Estas duas classes tem apenas o propdsito de inicializar as classes
JanelaBarGraph e JanelaTrendGraph, respectivamente, que irfio abrigar os Beans
BarGraph e TrendGraph. Ao se inicializar a classe, sera recuperado do prompt o
nome que o Bean ira ser reconhecido na rede, assegurando a individualidade de
cada instancia dos Beans que for aberta.

A 83 Package Janelas - Ciasses JanetaBarGraph @ JansialTrendGraph

Continuando a légica das classes anteriores, estas duas irdo abrir uma janela
para poder abrigar os respectivos Beans, atribuir-thes o nome recuperado do prompt

e deixa-los funcionando.

A.6A. Package BarGraphs - Classe BarGraphPanel

Uma vez abrigado pela classe JanelaBarGraph, o Bean BarGraph apresenta o
seguinte aspecto:

E;: \WAGA PENTIUMABaiGraphi

Wvirao; 60.0
- BO.0 &% 1 L4534

Minirno: 0.0 ﬁ

Nome do | I

ENTIUM\Sensori - |0
Sensarn I i
Registrar i Remaver l

WAGA_PENTIUM\BarGraph1 na redell]
A resposta foiZWAGA_PENTIUWM\BarGraphi ¢
| | Ll—l

Figura 4.6.4.1. interface grafica do BarGraph

SCADA em Java - Pag. 27

Os campos que possui se destinam & inscricio nos sensores, conforme
descrito nas classes anteriores. No campo "Nome do Sensor" entra-se com o nome
pelo qual o sensor € conhecido na rede; e no campo "Taxa", o intervalo de
amostragem para a atualizagio do mesmo. Entrar com taxa nula indica que o
BarGraph sera atualizado por evento. A area de texto serve para a impressdo de
mensagens geradas pelo BarGraph e peios sensores.

Ao se inscrever no sensor, o BarGraph recupera do sensor seus valores
maximos e minimos, e seréo a base para as atualizagbes futuras. Cada atualizacdo
conta com o preenchimento do grafico na altura correspondente, assim como escrita
do valor e o horario que o sensor passou o dado para o BarGraph.

4.65. Package BarGraphs - Classe BarGraph

A classe BarGraph possui a légica principal de inscricdes e remogdes do
BarGraph nas listas dos sensores, assim como inicializa a GUI e pée o BarGraph na
rede, para ser reconhecido peloc nome entrado pelo prompt gque foi recuperado peta
classe PrincipaiBarGraph. Esta classe impiementa a interface Aiualizacoes, ou seja,
possui um meéiodo chamado Afualizar que sera chamado remotamente pelos
sensores para terem seus dados sobre os mesmos atualizados. Uma vez recebidos
estes dados, o grafico BarGraphPanel correspondente sera reconstruido para refletir
este novo estado do sensor.

SCADA em Java - Pag. 28

A.6.6. Package TrendGraphs - Gtasse TrendGraphPanel

Esta € a classe responsével pela interface grafica do TrendGraph, e possui o
seguinte aspecto:

F5 \\AGA_PENTIUMATrendGraph1 =] ES
Mdximp: 80.0 |

B6.0 +— —

400 = EotEE) : =5 = "';._.'f_'_

20.0

Minma:0.0 36938 13:6933 1359728 1359.23 13.8018 13,5943 1359.08 135903 135658 155053

More do Sensor, Taa: VAGA_PENTIUMTrendGraph1 na redel!
Aresposta fol "AGA_PENTIUM(TrendGraph1 coneclado ao W

WAGA_PENTIUM\Sengor I [

Remover l «| | LI—I

Figura 4.6.6.1. Interface grafica do TrendGraph

Esta classe foi desenvolvida para ser um Bean, e possui duas caracteristicas
que podem ser modificadas quando em etapa de desenvolvimento da janela. A
primeira € o nimero de colunas a serem mostradas. Dependendo da aplicacéo
desejada, estipula-se o nimero de colunas que se deseja, e estas se distribuirdo
uniformemente ao longo da janela, sempre mantendo a largura originai do gréafico. A
outra caracteristica que pode ser mudada € o niimero de linhas, funcionando da
mesma maneira que 0 numero de colunas, ou seja, a altura do grafico sempre sera
mantida a mesma.

Os campos utilizados para inscrigdo e disposigido de mensagens seguem o
mesmo modelo que os descritos no BarGraphPanel, no item 4.6.4. As atualizagbes
também seguem o mesmo padréo, porém aqui para cada novo ponto que se recebe,
& preciso mover todos os outros pontos uma coluna para a direita, para depois poder
acrescentar este novo ponio e retracar a linha.

SCADA em Java - P4ag. 29

A5.7. Package TrendGraphs - Giasse TrendGraph

A estrutura geral do TrendGraph segue a mesma linha do BarGraph, descrita
no item 4.6.5.

9. Consideracdes Finais

Com este projeto, espera-se estar um passo a frente no desenvolvimento de
um novo ambiente para se trabalhar em SCADA. Todas as consideragtes feitas
sobre os componentes l6gicos que virdo a ser substituidos por componentes fisicos
foram as mais genéricas e abertas possiveis, para se poder fazer uma transicdo
segura e evitar quaisquer retrabalhos. A estrutura geral das classes e packages foi
desenvolvida ievando-se em consideragdo uma continuidade no desenvolvimento do
projeto sem grandes dividas. O projeto como um todo esté pronto para ser instalado
em uma maguina que possui interpretador Java em poucos minutos, para se
desprender mais tempo no desenvolvimento de sua estrutura do gue em sua
instalagao.

Concluindo, o projeto possui um carater generalista, aberto e de facil
implementag&o. Espera-se que com estas caracteristicas seja possivel ampliar sua
aplicag@o, assim como acelerar seu desenvolvimento, para poder acompanhar as
mudangas que estao ocorrendo e permanecer atual.

SCADA em Java - Pag. 30

6. Estrutura dos Codiges
6.1 Classa Bades

//Classe Dades, que implementa a interface GrupoDados
//possibilitando ¢ envio remoto de dados para inscricdes

package dados;

import java.io.Serializable;

public class Dados implements Serializable {

//Varidveis gerais da classe
public String Acao;
"remover"”
public String Componente;
public String TipoAtualizacao;
amostragem}
public float Intervalo;
amostragem

//Construtor principal da classe

public Dados{) {
Acao = null;
Componente = null;
TipoAtualizacao = null;
Intervalo = 0;

}

//Define o se vai "registrar® ou

//Nome do cliente
//Define o tipo de atualizacdo(eventos cu

//Intervalo de atualizacdo para

//Construtor com parametros j& especificados

public Dados(String a,
Acao = a;
Componente = ¢
TipoAtualizacao = t;
Intervalo = i;

String c,

String t, float i} {

SCADA em Java - Pag. 31

6.2 Classe Panto

// Classe Ponto, que agrupa valores das atualizacdes que os
// servidores passam para os componentes nele registrados

package dados;

import java.io.Serializable;

public class Ponto implements Serializable |

//Varidveis gerais da classe
public float ValorMaximo;
public float ValorMinimo;
public flocat ValorAtual;
public String Tempo;

public String NomeComponente;

//Construtor principal
public Ponto() f
ValorMaximo = 0;
ValorMinimo 0;
ValorAtual = 0;
Tempo = "00:00:00";
NomeComponente = null;

}

//Valor maximo atingido pelo componente
//Valor minimo atingido pelo componente
//Valor atual do componente

//Horério associado ao valor passado
//Nome do componente

//Construtor para parametros j& especificados

public Ponto(float max,

ValorMaximo = max;
ValorMinimo = min;
ValorAtual = v;
Tempo = t;

NomeComponente = s;

filcat min,

fleat v, String t, String s) {

SCADA em Java - Pég. 32

6.3. Gtasss Atualizacoes

//Interface Atualizacoes, que define o metodo Atualizar
//que permite que remotamente os valores dos clientes
//possam ser atualizados pelos servidores

package interfaces;

import java.rmi.Remote;

import java.rmi.RemcteException;

import dados.*;

public interface Atualizacoes extends Remote |

Object Atualizar(Ponto p) throws RemoteException;

6.4. Classe Inscricoes

//Interface Inscricdes, que define o método remoto a ser
//utilizado por servidores onde clientes irdo se registrar
//e que recebe a classe Dados para o registro ou remocio
//e retorna a classe Ponto com os valores atuzis do sensor

package interfaces;

import java.rmi.Remote;

import java.rmi.RemoteException;
import dados.*;

public interface Inscricoes extends Remote({

Ponto Alteralnscricao(Dados d) throws RemoteException;

SCADA em Java - Pag. 33

G.5. Cassa Sensor

//Classe Sensor, que implementa a interface Inscricoes
//para que componentes possam se registrar remotamente

rackage sensores;

import java.rmi.*;

import java.rmi.server.*;
import interfaces.*;
import dados.*;

public class Sensor extends UnicastRemoteObject
implements Inscricoes {

//Variaveis gerais da classe

static String nomesEventos [] = new String [11]; //Lista de clientes
atualizados por eventos

Thread nomesTaxas []
atualizados por amostragem

new Thread [11]; //Lista de clientes

static String NomeSensorAtual = null; //Varidvel que recebe o nome do

sensor digitado no prompt

static SensorFrame frame; //Varidvel que guarda a referécia a
GUI do sensor

boolean packSensorFrame = false; //Variavel utilizada para validar a
GUI

//Contrutor do Senscr, que chama a classe
//SensorFrame, que & a GUI do Sensor
public Sensor() throws RemoteException {

super(); //Chama o construtor do UnicastRemoteObject

//Bloco para validacio da GUI
frame = new SensorFrame (NomeSensorAtual);
if (packSensorFrame)

frame.pack({):
else

frame.validate({);
frame.setVisible{true);

//Método que pde o Sensor na rede, para ser localizado remotamente pela
varidvel "nome"
public static String ServicoSensor(String nome} |

//Definicdo do Gerenciador de Seguranca do RMI
if (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager());

//Coloca o sensor na rede como "nome"
try {
Inscricoes Senscrl = new Sensor{):
Naming.rebind(nome, Sensorl);

SCADA em Java - Pag. 34

} catch (Exception e) ({
System.cut.println("Excecacl do " + NomeSensorAtual + "!!:
" + e.getMessage()};
e.printStackTrace();
}

//Retorna que o processo foi bem sucedide
return (nome + " na rede!!");

//Método que implementa a interface Inscricoes,
f/que adiciona ou retira clientes da lista do Sensor
public Ponto AlteralInscricao (Dados d) {

Ponto valores = new Ponto(); //Varidvel que armazena
os dados do Sensor

valores.NomeComponente = NomeSensorAtual; //Armazenamento do nome
do Sensor

//Para Inscrigdo do Cliente
if (d.Acac.compareTo("registrar™)==0) {

int 1 = 0;

//Atualizacdo orientada a evento

if (d.TipoAtualizacao.compareTo ("porevento™)==0)
while ((i<10) & (nomesEventos[il!= null) }
1+4:;

//Atualizagdo orientada a amostragem
else //Orientado a taxas de amostragem
while ((i<10) & (nomesTaxas[i]'=null))
i44;

//Tem lugar na lista para a insercdo de um novo componente

if (i<10) |
//Inscrigio do componente na lista orientada a evento
if (d.TipoAtualizacac.compareTo ("porevento™)==0){
nomesiventos[i] = d.Componente;

//Inscricdo do componente na lista orientada a amostragem
} else {
nomesTaxas[i] = new
Amcstragem{d.Componente, (long) (d.Intervalo*1000)};
nomesTaxas[i] .start () ;
}

//Armazenamento dos valores do Sensor para ser passados para
O novo componente
valores.ValorMinimo = new
Float (frame.CampoValorMinimo.getText (}) .floatValue (};
valores.ValorMaximo = new
Float (frame.CampoValorMaximo.getText ()) .floatValue{) ;
valores.ValeorAtual = new
Float (frame.CampoValorAtual.getText ()) .floatValue () ;

SCADA em Java - Pag. 35

//Impressdo da resposta de sucesso de inclusédo na janela do

sensor
SensorFrame.AreaDeTexto.append(d.Componente+“ registrado na

posicac "+i+" do sensor\n"):

//N3o tem lugar na lista para novas inscricgdes
} else {

//Armazenamento de valores nulos para o componente pediu
0 registro

valores.ValorMinimo = 0;

valores.ValorMaximo 100;

valores.ValorAtual 0;

//Impressd@o da resposta de n3o inclusio na janela do
sensor
SensorFrame.AreaDeTexto.append ("Nio ha vagas para
"+d.Componente+" . \n"};
}

//Armazenamento do horario de atualizacio a ser passado para o
componente
valores.Tempc = new
Horas().EmDigital(System.currentTimeMillis()):
}

//Para Remogdo do Cliente
if (d.Acao.compareTo {"remover")==0) {

beolean encontrado = false; //Variavel gque indica ¢ estado de
procura do componente

//Remocdo do componente da lista orientada a esvento
if (d.TipoAtualizacao.compareTo("porevento")==0) {

//A lista ndo esta vazia
if (nomesEventos[Q] 1= null) {

//Procura pelo nome na lista
int i = 0;
while ((nomesEventos[i+1]!=null) &
(d.Componente.compareTo(nomesEventos{i])!=0))
i++;

//0 componente foi achado
if (d.Componente.compareTo(nomesEventos[i])==0) {

//0 componentes da fila subirdc de uma posicdo a
partir do retiradoc
int j = 0;
Tor (j=i; §<10; j++)
nomesEventos[j] = nomesEventos[j+1];

//0ltimo lugar da lista componente fica wvazio
nomesEventos[j] = null:

//Armazenamento de valeres nulos para o componente que
pediu retirada

valores.ValorMinimo = 0;

valores.ValorMaximo 100;

SCADA em Java - Pag. 36

valores.ValorAtual = 0;

//Impressioc da resposta de sucesso de remocio na
janela do sensor

SensorFrame.AreaDeTexto.append(d.Componente + "
retirado da posicac "+i+" do sensor\n"):

encontrado = true; //Indica que o componente foi
encontrado

}

//Remocdo do componente da lista orientada a amostragem
} else {

//A lista ndo estd vazia
if (nomesTaxas{0]!= null) {

//Procura pelo nome na lista
int 1 = 0;
while ({(nomesTaxas[i+1]!= null)} &
(d.Componente.compareTo(nomesTaxas[i].getName())!=O))
it+;

//0 componente foi achado
if (d.Componente.compareTo(nomesTaxas[i].getName() ==0Q) |

//A atualizacdo é terminada
nomesTaxas[i].stop{();
nomesTaxas[i]= null;

//0s componentes registrados sobem um lugar na lista
int § = 0;
for (j=i; j<10; j++)

nomesTaxas[j]l= nomesTaxas[j+1];

//Armazenamento de valores nulos para o componente que
pediu retirada

valores.ValorMinimo = 0;

valores.ValorMaximo 100;

valores.ValorAtual 0;

//Impressdo do resultado de sucesso na janela do
Sensor

SensorFrame.AreaDeTexto.append(d.Componente + ¥
retirado da posicao "+i+" do sensor\n");

encontrado = true; //Indica que o componente foi
encontrado

}

//0 Componente ndc foi encontrado
if (encontrado == false) {

SCADA em Java - Pag. 37

//Armazenamento de valores nulos para o componente que pediu
retirada

valores.ValorMinimo = 0;

valores.ValorMaximo 100;

valores.ValorAtual = 0;

//Impressdc do resultado de nio encontro na janela do Senscr
SensorFrame.AreaDeTexto.append ("Nio
encentrado: "+d.Componente+™.\n") ;

}

//Armazenamento de nulo para o componente que pediu a remocao
valores.Tempo = "00:00:00";

}

//Retorna os valores armazenados
return (valores):

//Método que atualiza os valores das Classe registradas
public static String Atualize (String cliente, Ponto p) {

String resposta = null; //Variavel que armazena o
texto de resposta

p.NomeComponente = NomeSensorAtual; //Armazenamento do nome do
5ensor

//Definicio do Gerenciador de Seguranca do RMI
if {System.getSecurityManager() == null)
System.setSecurityManager(new RMISecurityManager()):

//Procura pelo componente e atualiza o nesmo
try {
Atualizacoes objremoto = (Atualizacoes)
Naming.lookup (cliente);
resposta = (String) (objremoto.Atualizar (p));

} catch (Exception e) {
System.out.printin{"Excecac? do " + NomeSensorAtual + "!!;
" + e.getMessage());
e.printstackTrace();
}

//Retorna ¢ texto do resultado da atualizacao
return("A resposta foi: " + respostal;

//Método para atualizar as classes orientadas a evento
public static String AtualizaFvento {Ponto p){

String resultado = null; //Variavel que armazena o texto de
resposta

//Armazenamento do horario de atualizacdo

SCADA em Java - Pag. 38

p.Tempo = new Horas().EmDigital(System.currentTimeMillis());

//Percorre a lista e atualiza os componentes registrados

int i=0;

while { (i<10) & (nomesEventos[i]!= null)){
resultado = Atualize (nomesEventos[i],p);
1++;

}

//Modifica o texto de resposta caso nio haja componentes na lista

if (resultado == null)

resultado = "N3o ha componentes ligados no sensor.";

//Retorna ¢ texto do resultado da atualizacao
return (resultado) ;

//Método principal do Sensor
public static wvoid main (String argsf[j) |

tl

NomeSensorAtual
nome digitado no prompt
String resposta = ServicoSensor (NomeSensorhtual) ;

args|[0];

//Recupera o

//Liga o sensor

ha rede
SensorFrame.AreaDeTexto.append (resposta+™\n") ; //Imprime
Sucessc na janela do sensor
}
}
//Thread de atualizacao das classes orientadas a taxas
class Amostragem extends Thread {
long taxa: //Variavel que armazena a taxa de amostragem

(em milisequndos)

boolean Registro = true; //Variavel que indica que estd sendo feito o

registro na lista

//Construtor principal da classe
public Amostragem(String nome, long t} {

taxa = t; //Brmazenamento da taxa de amostragem
setName (nome); //D& um nome ac Thread para ser identificadoc

}

//Inicia o o processo de atualizacdo
public void run{) {

Ponto p = new Ponto{): //Inicializa o grupo de valores a ser

passado

long TempoInicial = System.currentTimeMillis () ;
tempo inicial

//Loop geral da taxa de amostragem
while (true) {

//Guarda o

SCADA em Java - Pag. 39

//Atualiza o valor dos clientes

p.ValorMinimo = new
Float(Sensor.frame.CampoValorMinimo.getText()).floatValue();

p.ValorMaximo = new
Float(Sensor.frame.CampoValorMaximo.getText()).floatValue();

p.ValorAtual = new
Float(Sensor.frame.CampovalorAtual.getText(}).floatValue();

p.Tempo = new Horas().EmDigital (TempoInicial);

//Esta iteracdo corresponde aoc loop
if (Registro == true)
Registro = false; //Indica que a proxima iteracdo
ndo corresponde ao registro

//Esta iterac#c nd3c corresponde ao registro
else
Sensor.Atualize (this.getName{),p); //Atuvaliza os
valores do componente

//Delay do restante do tempo de amostragem
try {
TempoInicial += taxa;
Thread.sleep (Math.max (0, TempoInicial-

System.currentTimeMillis(})):
} catch (InterruptedException e) |
break;

1

}

//Classe horas, que retornz o valor de milisegundos para ¢ formato desejado

class Horas |

//Método que transforma o valor no formato HH:MM:SS
public String EmDigital (long Horario) [

String s = ""+((int) ((Horario/1000)%60));
String min = ""+{({int} ((Horario/60000)%60}):
String h = "M ((int) { (Horario/3600000)%24));

//Bloco de insergdo de zeros em numeros de 1 digito
if (s.length() == 1)

s = "0" 4 g;
if {min.length() == 1)
min = "0" + min;

if (h.length(} == 1)
h = "0" + h;

return(h + ":" + min + ":" + 5); //Retorna o texto "HH:MM:SS"

SCADA em Java - Pag. 40

6.5. Ciasse Sensorframe

//Classe SensorFrame, que implementa a GUI do Seasor
package sensores;

import java.awt.*;

import java.awt.event.*;
import borland.jbcl.layout:,*;
import interfaces,.*;

import dados.*;

public class SensorFrame extends Frame implements ActionlListener{

//Variédveis gerais da classe atual

X¥Layout xYLayoutSensor = new XYLayout{);
Button BotaoAtualizar new Button();
Label TextoValorMaximo = new Label (};
TextField CampoValorMaximo new TextField():;
Label TextoValorMinimo new Label ()
TextField CampoValorMinimo new TextField();
Label TextoValoratual = new Label (});
TextField CampoValoratual new TextField():
static TextArea AreaDeTexto new TextAreal();

Il

//Construtor da classe atual
public SensorFrame(String nome) {

//Chama o métode que define o layout da janela e inclui os componentes
acima
try {

MontaGUI (nome) ;

} catch (Exception e) {
System.out.println({"Excecacl do SensorFrame: " + e.getMessage ()) ;
e.printStackTrace () ;

//Construgdo da GUI
public void MontaGUTI (String NomeSensor) throws Exception{

//Definicdo do layout geral da janela
this.setLayout(xYLayoutSensor);
this.setBackground(Color.lightGray);
this.setSize (new Dimension (329, 205));
this.setTitle (NomeSensor);

//Definicdo das propriedades dos componentes da janela
BotaoAtualizar.setLabel ("Atualizar Valores");
TextoValorMaximo, setText ("Valor Maximo: ") ;
CampoValorMaximo.setText ("80") ;
TextoValorMinimo.setText ("Valor Minimo:"™):
CampoValorMinimo, setText ("0") ;

TextoValorAtual.setText ("Valor Atual:");
CampoValorAtual.setText ("40");

SCADA em Java - Pag. 41

tamanhos

//Inclusdo dos itens na janela, com respectivas coordenadas e

this.add (BotaoAtualizar, new XYConstraints{ 5, 38, 141, 24))
this.add{TextoValorAtual, new XYConstraints(5, 7, 70, 25))
)
)

“e we Wy

this.add (CanpoValorAtual, new XYConstraints(76, 7, 70, 24)
this.add (AreaDeTexto, new XYConstraints(5, 71, 311, 100));
this.add (TextoValorMaxime, new XY¥YConstraints (160, 7, 75, 28)):
this.add(TextoValorMinimo, new XYConstraints (160, 38, 75, 25));
this.add (CampoValorMaximo, new XY¥Constraints (245, 7, 70, 24));
this.add (CampoValorMinimo, new XY¥YConstraints (245, 38, 70, 24));

//Seta que o botdo do sensor e os botdes da janela geram eventos
BotaoAtualizar.addActionListener (this) ;
this.addWindowListener (new WindowAdapter() {
public void windowClosing (WindowEvent e) {
System.exit (0);

-~

//Métcdo para lidar com os eventos gerado pelo botdo

public

void actionPerformed(ActionEvent e} {

//Inicializacac do grupo de dados a serem passados
Ponto p = new Ponto();

//Envia os valores para o Sensor e imprime o resultado na janela
if (e.getActionCommand () .compareTo (*Atualizar Valores")==0) {
p.ValorMinimo = new

Float(CampoValorMinimo.getText()).floatValue(};

p.ValorMaximo = new

Float (CampoValorMaximo.getText ()).floatValue () ;

p.ValorAtual = new

Float (CampoValorAtual.getText ()) .floatValue();

String resultado = Sensor.AtualizaEvento (p);
AreaDeTexto.append (resultado+"\n") ;

}

SCADA em Java - Pég. 42

G.7.Ctasss GLP

//Classe CLP, que implementa a interface Atualizacoes,
//para poder ter seus dados atualizados remotamente

package clps;

import
import
import
import

public

Java.rmi.*;
java.rmi.server.*;
interfaces.*;
dados.*;

class CLP extends UnicastRemoteObject
inmplements Atualizacoes |

//Varidveis gerais da classe atual
boolean packCLPFrame = false; //Variavel para validacao

da GUI

static CLPFrame frame

new CLPFrame(); //Variavel que

corresponde & GUI do CLP

static String NomeCLPAtual

static String ListaAtuadores []{]

null; //Nome que o CLP vai ter

new String [11]1[2]; //Lista do

par Atuador - Sensor

static float ExtremosaAtuadores [][]

new float [11][2]; //Lista dos

valores extremos dos atuadores

//Contrutor do CLP, gque chama a classe
//CLPFrame, que é a GUI do CLP
public CLP({) throws RemoteException {

super{(); //Chama o construtor do UnicastRemoteObject

//Bloco de validagdc da GUI
if {packCLPFrame)
frame.pack();
else
frame.validate () ;
frame.setVisible (true); //Abre a janela

//Inicializacdc das Listas

for (int i=0; i<11; i++} {
ListaAtuadores [i][0]=null;
ListaAtuadores [i][1l]=null;

//Método que pde o CLP na rede, para ser localizado
//remotamente, através da variavel "nome”
public static String ServicoCLP(String nome} {

//Definicio do Gerenciador de Seguranca do RMI
if (System.getSecurityManager{) == null)
System.setSecurityManager (new RMISecurityManager());

SCADA em Java - Pag. 43

//Coleca o CLP na rede como "nome"
try {

Atualizacoes CLPl = new CLP{);
Naming.rebind(nome, CLP1);

} catch (Exception e) {
System.out.printin("Excecaol do " + nome + ": " +
e.getMessage (});
e.printStackTrace();
}

//Retorna texto para indicar sucesso do processo
return (nome + " na rede!!"™);

//Método que chama a classe Sensor para se inscrever na sua lista
public static String Registro(String nome, Dados d} {

I

null; //Texto que o método retorna
NomeCLPAtual; //Indica o nome da CLP que serd

String resposta
d.Componente
passado para o sensor

//Definicdc do Gerenciador de Seguranca do RMI
if (System.getSecurityManager() == null)
System.setSecurityManager {new RMIsecurityManager()):;

//Procura o sensor e efetua o registro

try |
Inscricoes objremoto = (Inscricoes) Naming.lookup {nome) ;
Ponto ValorRecebido = objremcto.Alteralnscricao (d);
resposta = AtualizarAtuador (ValorRecebido) ;

//Definicac do texto a ser retornado

if (d.Acao.compareTo("registrar")==0) {
resposta = NomeCLPAtual + " conectado ao " + nome + T
} else {
resposta = NomeCLPAtual + " retirado do " + nome + e

}
} catch (Exception e) {
System.out.println("Excecao2 do "+NomeCLPAtual+": " +
e.getMessage ());
e.printStackTrace () ;
}

//0 registro foi efetuado
if (resposta != null)
return ("A resposta foi:" + resposta);

//0 registro nioc foi efetuado

else
return{nome + "™ nio encontrado!"):;

//Método gque chama a classe Atuador para pegar seus dados

SCADA em Java - P4ag. 4

public static String RegistroAtuador (String atuador, String sensor,
String acao) {

String resposta = null; //Texto que o método
retorna

//Definicdo do Gerenciador de Sequranca do RMI

if (System.getSecurityManager{) == null)
System. setSecurityManager (new RMISecurityManager()):

//Registro do atuador na lista

if {acaoc.compareTo ("registrar®)==0} {
try {
Ingcricees obhjremoto = (Inscricoes) Naming.lookup (atuador) ;

//Procura o atuador

Dados d = new Dados(); //Inicializa os dados a serem

passados
d.Componente = sensor; //Envia o nome do sensor que faz

par com o atuador
d.Acac = "registrar"; //Indica que estd se efetunando um

registro

Ponto AtuadorRecebide = objremoto.Alteralnscricao (d);
//Recebe os dados do atuador

//Procura um lugar na lista para incluir o atuador

int i=0;

while { (i<10) & (ListaRtuadores[i] {0]!= null))
id+;

//Achou um lugar
if (i<10) {

//Insere os dados do atuador nas listas
ListaAtuadores[i] [0] = atuador:

ListaAtuadores([i] [1] = sensor;
ExtremosAtuvadores([i] [0] = AtuadorRecebido.ValorMinimo;
ExtremosAtuadores[i] [1] = AtuadorRecebido.ValorMaximo;

resposta = NomeCLPAtual + " conectado ao " + atuador +

T "n,
- r

//N&o ha vagas
} else {

resposta = "Nio hd vagas para " + atuador + ".";

}

} catch (Exception e} {
System.out.println("Excecao3 do "+NomeCLPAtual+™: ™ +

e.getMessage ()) ;
e.printStackTrace():;

}

//Remocdo do atuador na lista
} else {

//Lista ndo estad wvazia
if (ListaAtuvadores(0][0j!= null) {

SCADA em Java - Pag. 45

//Procura o par Atuador - Sensor correspondente

int i=0;

while ([(i<10)

&

((ListaAtuadores[i][0].compareTo(atuador)!=0) |
(ListaAtuadores[i]{1].compareTo(sensor)!=O))){

i++;

}

//Achou o atuador

if (i<10)

posicao

ListaAtuadores[j+1]1i0];
ListaAtuadores[§+11[1];
ExtremosAtuadores[j+1][0];

ExtremosAtuadores[j+1][0];

NomeCLPAtual + ".";

Naming.lookup (atuador) ;

objremoto.Rlteralnscricac (d};

try {

//0s componentes da lista sobem de uma

int j = 0;
for (i=i:; j<10; J++) {
ListaAtuadores[j] (0]

ListaAtuadores([j][1]

ExtremosAtuadores[j] [0]

ExtremosAtuadores[j] [1]

}

//0 tultimo vwalor da lista fica vazio
ListaAtuadores]j} [0] = null;
ListaAtuadores[i]1[1] = null:
ExtremosAtuadores([]j][0] 0;
ExtremosAtuadores[j][1] 0;

([

//Imprime o resultado na janela da CLP
resposta = atuador + " retirado do " +

//Acessa o atuador para indicar a remocio
Dados d = new Dados():;

d.Componente = sensor;

d.Acao = "remover™;

Inscricoes objremoto = (Inscricoes)

Ponto AtuadorRecebido =

} catch (Exception e) {

System.cut.println("Excecaod do

"+NomeCLPAtual+": " + e.getMessage());

e.printStackTrace() ;

//Nio achou o atuador

} else {

resposta = "Ndo encontrado: " + atuador + ".";

}

//A lista estd vazia

} else |

SCADA em Java - Pag. 46

resposta = "A lista estd vazia.";

//Remocdo efetuada com sucesso
if (resposta != null)
return("A resposta foi:" + resposta};

//Renmocao ndo foi efetuada
else
return(atuador + " ndoc encontrado!");

//Métode que implementa a interface Atualizacoes,
//gque permite que o sensor atualize remotamente o atuador
public Object Atualizar (Ponto p) |

String resposta = AtualizarAtuador(p) ;
return{resposta);

//Método gue atualiza os atuadores
public static String AtualizarAtuador (Ponto p) {

String resposta = null; //Variével do texto a ser retornado

//A lista ndo esta vazia
if (ListaAtuadores{0][0]!= null) f{

//Procura os atuadores influenciados pelo sensor em guestéio
int i=0;
while {(i<10) &
(ListaAtuadores[i] [1].compareTo (p.NomeComponente) !=0})
i++;

//fAchou o atuador
if (i<19) {

//Seta os valores a serem passados para o atuador
String cliente = ListaAtuadores{i][0];
p.ValorAtual = Controlador (p,i);

p.ValorMinimo = ExtremosAtuadores[i}[0];
p.ValorMaximo = ExtremosAtuadores([i](l];

//Definicdc do Gerenciador de Seguranca do RMI
if (System.getSecurityManager{) == null)
System.setSecurityManager {new RMISecurityManager ()} ;

//Efetua a atuwalizacio no atuador

try {
Atualizacoes objremoto = (Atualizacoes)
Naming. lookup (cliente) ;
resposta = {String) (objremoto.Atualizar(p)):

} catch (Exception e} {

SCADA em Java - Pag. 47

System.out.println("Excecaob do " + NomeCLPAtual +
"H1r " + e.getMessage());
e.printStackTrace();
}

//N&o hé nenhum atuador que vai ser modificado devido ao sensor
} else {
resposta = "N&o hé atuadores em par com
"+p.NomeComponente;

}

//A lista esta vazia
} else {

resposta = "N&o hd atuadores em par com "+p.NomeComponente;
}

return ("A resposta foi: " + resposta);

}

//Légica do controlador -> recebe o valor do sensor em relacio ao maximos
e minimos

//e calcula o valor correspondente para o atuador

public static float Controlador(Ponto p, int i) {

float porcentagem = {p.ValorAtual-p.ValorMinimo)/ (p.ValorMaximo-
p.ValorMinimo) ;
float ValorAtuador = {porcentagem* (ExtremosAtuadores[i][1]-

ExtremosAtuadores{i] [0])}+ExtremosAtuadores[i] [0];
return (ValorAtuador):;

}

//Método principal do CLP
public static void main (String args(]) |

NomeCLPAtual = args{0]; //Recebe o
nome do CLP do prompt

String resultado = ServicoCLP (NomeCLPAtual): //Coloca o
CLP na rede

frame.setTitle (NomeCLPAtual) ; //Define o

titulo da janela
frame.AreaDeTexto.append (NomeCLPAtual+"” na rede!!\n"); //Imprime o
resultado

}

SCADA em Java - P&ag. 48

6.8. Gtassa CLPFrame

//Classe que implementa a GUI do CLP

package clps;

import
import
import
import
import

Jjava.awt.*;
java.awt.event.,*;
borland.jbecl.layout.*;
interfaces.*;

dados.*;

public

//Variaveis gerais da classe
XYLayout xYLayoutCLP

Label TextoComponentelAtuador
Label TextoSensor

TextField CampoComponenteAtuador
TextField CampoSensor

Button BotaoRegistrarAtuador
Button BotacRemoverAtuador
Label TextoComponenteSensor
Label TextoTaxaSensor
TextField CampoComponenteSenscr
TextField CampoTaxaSensor
Button BotaoRegistrarSensor
Button BotaoRemoverSensor
static TextArea AreaDeTexto

//Construtor da classe atual
public CLPFrame () {

o

Ml

new
new
new
new
new
new
new
new
hew
nnew
new
new
new
hew

//Chama o método que define o layout

acima
try {
MontaGUI{) ;
} catch (Exception e} {

System.out.println("Excecaol do CLPFrame:

e.printStackTrace{);

//Construcdo da GUI

class CLPFrame extends Frame implements ActionListener(

XYLayout () ;
Label () ;

Label () ;
TextField ()
TextField () ;

Button();
Button{();

Label () ;
Label();
TextField() ;
TextField{);

Button() ;
Button() ;
TextArea() ;

da janela e inclui os componentes

" + e.getMessage()):

public void MontaGUI() throws Exceptioni

//Definicdo do layout geral da janela

this.setLayout (xYLayoutCLP) ;

this.setBackground (Color.lightGray) ;
this.setSize (new Dimension {400, 275));

//Definicéo das propriedades dos componentes da janela
TextoComponenteAtuador.setText ("Nome do Atuador:");
CampoComponenteAtuador. setBackground (Color.white) ;

SCADA em Java - Pag. 49

TextoSensor .3etText ("Sensor Reponsavel:");
CampoSensor .setBackground (Color.white) ;
BotaoRegistrarAtuador .setLabel {"Registrar Atuador");
BotacRemoverAtuador .setlabel {("Remover Atuador™};
TextoComponenteSensor .setText ("Nome do Sensor:");
CampoComponente3ensor .setBackground (Color.white);

TextoTaxaSensor .5etText ("Taxa:");

CampoTaxaSensor .setText ("0");

BotaoRegistrarSensor .setlabel ("Registrar CLP no Sensor"):;
BotaoRemoverSensor .setLabel ("Remover CLP do Sensor"):
AreaDeTexto .setBackground (Color.white) ;

//Inclusdo dos itens na janela, com respectivas coordenadas e

tamanhos

this.add{TextoComponenteAtuador, new XYConstraints({ 5, 7, 115,
200 this.add (CampoComponenteAtuador, new XYConstraints(125, 7, 125,
e=tr this.add (TextoSensor, new XYConstraints({ 5, 35, 115,
R this.add (CampoSensor, new XYConstraints (125, 35, 125,
) this.add(BotacRegistrarAtuador, new XY¥Constraints (260, 7, 122,
P this.add (BotaoRemoverAtuador, new XYConstraints(260, 35, 122,
e L this.add (TextoComponenteSensor, new XYConstraints(5, 180, 100,
2o this.add (CampoComponenteSensor, new XYConstraints (110, 180, 145,
s this.add (TextoTaxaSensor, new XYConstraints (285, 180, 40,
20 this.add (CampoTaxaSensor, new XYConstraints (325, 180, 55,
SR this.add (BotacRegistrarSensor, new XYConstraints(15, 215, 165,
90 this.add (BotaoRemoverSensor, new XYConstraints (195, 215, 165,
SSiE this.add (AreaDeTexto, new XYConstraints(5, 70, 380,
100)};

//Seta que os botdes da CLP e 05 botdes da janela geram eventos
BotaoRemoverSensor .addActionListener (this);
BotaoRegistrarSensor.addActionListener (this);
BotaoRemoverAtuador .addActionListener(this):
BotaoRegistrarAtuador.addActionListener (this);
this.addWindowListener (new WindowAdapter() {

public void windowClosing{WindowEvent e) {

System.exit (0); } }}):

//Método para lidar com os eventos gerados pelos botdes
public void actionPerformed (ActionEvent e) {

Dados d = new Dados(); //Inicializacao do grupo de dados a serem
passados

//Agcdo do botdc RegistrarSensor

SCADA em Java - Pag. 50

if (e.getActionCommand().compareTo("Registrar CLP no Sensor")==0)

//Envia os valores para a CLP e imprime o resultado na janela

d.Acao = "registrar";

d.Intervalo = new
Float(CampoTaanensor.getText()).floatValue();

if {d.Intervalo > 0)

d.TipoAtualizacac = "poramostragem"”;
else
d.TipoAtualizacao = "porevento";

String resposta =
CLP.Registro(CampoComponenteSensor.getText(),d);
AreaDeTexto.append (resposta+®\n") ;

}

//Acdo do botio RemoverSensor
if {e.getActionCommand () .compareTo ("Remover CLP do Sensor")==0) {

//Envia os valores para a CLP e imprime o resultado na janela
d.Acao = "remover";
d.Intervalo = new

Float (CampoTaxaSensor.getText ()) .floatValue () ;

if (d.Interwvalo > 0)

d.TipoAtualizacao = "poramostragen";
else
d.TipoAtualizacao = "porevento";

String resposta =
CLP.Registro(CampoComponenteSensor.getText(),d);
AreaDeTexto.append (resposta+™\n");
}

//Acdo do botdo RegistrarAtuador
if {e.getActionCommand () .compareTo ("Registrar Atuador® ==0} {

//Envia os valores para a CLP e imprime o resultado na janela
String acao = "registrar";
String sensor = CampoSensor.getText({);
String atuador = CampoComponenteAtuador.getText () ;
String resposta = CLP.RegistroAtuador (atuador, sensor, acao) ;
AreaDeTexto.append(resposta+"\n");

}

//Agdo do botic RemoverAtuador
if (e.getActionCommand () .comparelo ("Remover Atuador™)==0) {

//Envia os valores para a CLP e imprime o resultado na janela
String acao = "remover";

String sensor = CampoSensor.getText();

String atuador = CampoComponenteAtuador.getText () ;

String resposta = CLP.RegistroAtuador (atuador, sensor, acao) ;
AreaDeTexte.append{resposta+™"\n") ;

SCADA em Java - Pag. 51

6.9. Ciassa Atuador

//Classe Atuador, que implementa a interface Atualizacoes, para poder ter
//seus dados atualizados remotamente; e a interface Inscricoes, para que
//componentes possam se registrar remotamente

package atuadores;

import java.rmi.*;

import java.rmi.server.*;
import interfaces.*;
import dados.*;

public class Atuador extends UnicastRemoteObiject
implements Atualizacoes, Inscricoes {

//Varidveis gerais da classe atual

bocolean packAtuadorFrame = false; //Variavel para
validacio da GUI

static AtuadorFrame frame
corresponde a GUI do Atuador

static String NomeAtuadorAtual
Atuador vai ter

new AtuadorFrame(); //Variavel que

null; //Nome que o

//Construtor do Atuador, que chama a classe
//AtuadorFrame, que é a GUI do Atuador
public Atuador () throws RemoteException {

super () ; //Chama o construtor do UnicastRemoteObject

//Bloco de validacao da GUI
if (packAtuadorFrame)
frame.pack();
else
frame.validate () ;
frame.setVisible(true); //Abre a janela

//Método que pde o Atuador na rede, para ser localizado
//remotamente, através da variavel "nome"
public static String ServicoAtuador (String nome) {

//Definicido do Gerenciador de Seguranca do RMI
if (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager()):;

//Coloca o Atuador na rede como "nome"
try {

Atualizacoes Atuadorl = new Atuador () ;
Naming.rebind(nome, Atuadorl):;

} catch (Exception e) {
System.out.println("Excecacl do "™ + nome + ": " +
e.getMessage());
e.printStackTrace();

SCADA em Java - Pag. 52

}

//Retorna texto para indicar sucesso do processo
return (nome + " na rede!!");

//Método que retorna os valores do atuador
public Ponto Alteralnscricao ({Dados dy {

Ponto p = new Ponto(): //Inicializa os dados a serem passados

//Efetua o registro
if (d.Acao.compareTo{"registrar®)==0) {

//Armazena os dados referentes ao atuador e imprime o resultado
ha janela

p.NomeComponente = (NomeAtuadorAtual);
p.ValorMinimo = new
Float(frame.CampoValorMinimo.getText()).floatValue();

p.ValorMaximo = new
Float(frame.CampoValorMaximo.getText()).floatValue();

frame.AreaDeTexto.append(NomeAtuadorAtual+“ em par com
"+d.Componente+"!\n"); //Imprime o resultado

//Efetua a remocdo
} else |

//Imprime o resultado na janela
frame.AreaDeTexto.append (NomeAtuadorAtual+" ndo esti em par
com "+d.Componente+"!\n"); //Imprime o resultado
}

//Envia os dados para a CLP
return{p)

//Método que implementa a interface Atualizacoes,
//que permite que o sensor atualize remotamente o grafico
public Object Atualizar(Ponto p) |

//Envia cs dados para a GUI e imprime o resultado na janela
frame,Construir({p):
return ("Atualizacdo feita.");

//Método principal do Atuador
public static void main (String args[]) {

NomeAtuadorAtual = args([0};
//Recebe o nome do Atuador do prompt

String resultado = ServicoAtuador (NomeAtuadorAtual) ;
//Coloca o Atuador na rede

frame.setTitle (NomeAtuadorAtual);
//Define o titulo da janela

SCADA em Java - Pag. 53

frame.AreaDeTexto.append (NomeAtuadorAtual+" na rede! '\n") ;
//Imprime o resultado

}

6.10. Ciasss Atuadorframe

//Classe que implementa a GUI do Atuador
package atuadores;

import java.awt.*;

import java.awt.event.*;
import borland.jbel.layout.*;
import interfaces.*;

import dados.*;

public class AtuadorFrame extends Frame {

//Variaveis gerais da classe

XY¥layout xYLayoutAtuador = new XYLayout (};
Label TextoValorMaximo new Label({);
Labeal TextoValorMinimo new Label () ;
TextField CampoValorMinimo new TextField();
TextField CampoValorMaximo new TextField():
static TextArea AreaDeTexto new TextAreal();

IF

//Variaveis gerais para o grafico impresso

static float MaxValor = 100; //Valor méximo do atuador na unidade
coerente

static float MinValor = 0; //Valor maximo do atuador na unidade
coerente

float ValorReal = 0; //Valor atual do atuador na unidade
coerente

int ValorPixel = 0; //Valor atual do atuador em pixel

int altura = 120; //Altura em pixel do grafico

int largura = 50; //Largura em pixel do grafico

String Tempo = "00:00:00"; //Horédrio inicial a ser impresso

//Construtor da classe atual
public AtuadorFrame() {

//Chama o método que define o layout da janela e inclui os componentes
acima
try {

MontaGUI () ;

} catch (Exception e) {
System.out.println("Excecacl do AtuadorFrame: " +
e.getMessage () };
e.printStackTrace();
}

SCADA em Java - Pag. 54

//Construcdo da GUI
public void MontaGUI(} throws Exception{

//Definicdo do layout geral da janela
this.setLayout (xYLayoutAtuador);
this.setBackground (Color.lightGray) ;
this.setSize (new Dimension (285, 340)}):

//Definicdo das propriedades dos componentes da janela
CampoValorMaximo .setBackground(Color.white);
TextoValorMaximo .setText ("Valor Maximo:");
CampoValorMaximo .setText {""+MaxValor);

AreaDeTexto .setBackground (Color.white) ;
TextoValorMinimo .setText("Valor Minimo:");
CampoValorMinimo .setText(""+MinvValor):;

//Inclusdo dos itens na janela, com respectivas coordenadas e
tamanhos

this.add(TextoValorMinimo, new XYConstraints(5, 145, 100, 25))

this.add{CampoValorMinimo, new XYConstraints(5, 170, 100, 25))

this.add (TextoValorMaximo, new XYConstraints (160, 145, 100, 25));

this.add (CampoValorMaximo, new XYConstraints (160, 170, 100, 25})

this.add (AreaDeTexto, new XYConstraints(5, 205, 265, 100))

//Seta que os botdes da janela geram eventos
this.addWindowlhistener (new WindowAdapter() {
public wvoid windowClosing{WindowEvent e) |{
System.exit{0); } }}):

//Método que calcula o valor em pixel da altura do grafico e associa ao
horario de atualizacdo
public woid Construir{(Ponto p) {

MinValor = p.ValorMinimo;

MaxValor = p.ValorMaximo;

ValorReal = p.ValorAtual;

Tempo = p.Tempo;

ValorPixel = {int) (((ValorReal-MinValor)/ {(MaxValor-

MinValor))*altura);
repaint () ;

//Método que constrdi o grafico
public void paint (Graphics g) {

int x = 1107 //Localizacdo em x do graAfico a ser impresso
int ¥ 32; //Localizacdo em y do grafico a ser impresso

//Construgdc do efeito 3D do grafico
MontaMoldura (x, v, g):

//Preenchimento da altura do grafico
g.setColor (Color.xred) ;

SCADA em Java - Pag. 55

g.fillRect (X, y+{altura-ValorPixel), larqura, ValorPixel);

//Textos de maximo, minimo e valor atual
g.setColor (Color.black);

g.drawString ("Maximo: " + CortaCasas (MaxValor), x-100, y+5):
g.drawString {("Minimo: " + CortaCasas (MinValor), x-100,
y+altura+3);

g.drawString{CortaCasas(ValorReal) + " as " + Tempo, x+55,

y+ (altura-ValorPixel) +5) ;

}

//Método que monta o efeito 3D do grafico

public void MontaMoldura (int x, int Y, Graphics g} {

//Linha cinza
g.setColoxr (Color.gray);

¢g.drawlLine (x-2, y+altura, x-2 s ¥Y-2);
g.drawline (x-2, y=-2 ;s X+largura+l, y-2);:

//Linha branca
g.setColor (Color.white);

g.drawLine (x~2 » ytaltura+l, x+largura+l, y+altura+l);
g.drawline (x+largura+l, y+altura+l, X+largura+l, y-2);

//Linha preta
g.setColor (Color.black);

g.drawline (x-1, y+altura, =-1 r y-1);
g.drawline (x—-1, y-1 ;, xX+largura-1, y-1):

//Fundo branco
g.setColor (Color.white) ;
g.fillRect (X, y, largura, altura);

//Método que corta as casas do valor impresso na tela

public static String CortaCasas(flcat Valor) {

int Inteiro = (int) (Valor};
int Casas = (int) {({ Valor -~ {(float) ({Inteiro))) * 100);
float Resultado = ((float) (Inteiro)) + {{(float} (Casas))/100);

return ("" + Resultado):

SCADA em Java - Pag. 56

6.1L Ciassa PrincipaiBarGraph

//Classe PrincipalBarGraph, que recebe o nome do prompt, e
//inicializa a janela que hospedard o BarGraph

package graphs.Janelas;
public class PrincipalBarGraph {

boclean packFrame = false; //Variavel de validacdo da GUI

//Construtor da classe atual
public PrincipalBarGraph (String nome) {

//Inicializa a janela que contém o BarGraph
JanelaBarGraph frame = new JanelaBarGraph (nome) ;

//Valida a janela
if (packFrame)
frame.pack():
else
frame.validate();
frame.setVisible (true) ;

}

//Método principal da classe
static public void main(String[] args) {

//Inicializa a classe com o nome recebido pelo prompt
new PrincipalBarGraph(args([0]);

6.12 Glasss JanelaBarGraph

//Classe JanelaBarGraph, que chama serve como hospedeira para a classe
//BarGraph, que esta sendo incluida como um Bean

package graphs.Janelas:;

import java.awt.*;

import java.awt.ewvent.*;
import borland.jbcl.layout.*;
import graphs.BarGraphs.*;

public class JanelaBarGraph extends Frame {
//Varidveis gerais da classe

XYLayout xYLayoutl = new XYLayout () :
String titule null;

SCADA em Java - Pag. 57

BarGraphPanel janela; //Variavel que indica o BarGraph que vai ser

adicicnado & Jjanela

//Construtor da classe atual
public JanelaBarGraph(String nome) {

titulo = nome; //Define o titulo da janela (o nome do
BarGraph}

janela = new BarGraphPanel(); //Inicializa o novo BarGraph

janela.Conecta{titulo):; /fFaz o BarGraph se conectar na rede

//Chama o método que define o layout da janela
try {

MontaGUI () ;

} catch (Exception e} {
System,out.println ("Excecaol do JanelaBarGraph: " +
e.getMessage{));
e.printStackTrace();
1

//Construcdo da GUI
public void MontaGUI() throws Exception{

//Definicdo do layout geral da janela
this.setLayout (xYLayoutl);
this.setBackground{Color.lightGray) ;
this.setSize(new Dimension (285, 360));:
this.setTitle (titulo);

//Seta que os botdes da janela geram eventos
this.addWindowListener (new WindowAdapter () {
public void windowClosing(WindowEvent e) |
System.exit (0);
}
b

//Bdicicne o BarGraph na janela
this.add{janela) ;

SCADA em Java - Pag. 58

6.8 Classs BarGraphPanel

//Classe que implementa a GUI do BarGraph, que estd acertada para ser usada
como Bean

package graphs.BarGraphs;

import java.awt.*;

import java.awt.event.*;
import borland.jbcl.layout.*;
import interfaces.*;

import dados.*;

import java.io.Serializable;

public class BarGraphPanel extends Panel
implements ActionListener,
Serializable {

//Varlaveis gerais da classe

XYLayout x¥YlLayoutBarGraph = new XYLayout();
Button BotaoRegistrar = new Button{():;
Button BotaoRemover = new Button();
Label TextoComponente = new Label (};
Label TextoComponente? = new Label({):;
Label TextoTaxa = new Label();
TextField CampoTaxa = new TextField():;
TextField CampoComponenteServidor = new TextField({);
static TextArea AreaDeTexto = new TextAreal);

//Variaveis gerais para o grafico impresso

float MaxValor = 100; //Valor maximo do atuador na unidade
coerente

float MinValor = 0; //Valor maximo do atuador na unidade
coerente

float ValorReal = 0; //Valor atual do atuador na unidade
coerente

int ValeorPixel = 0; //Valor atual do atuador em pixel

int altura = 120; //Rltura em pixel do grafico

int largura = 50; //Largura em pixel do grafico

String Tempo = "00:00:00"; //Horadrio inicial a ser impresso

BarGraph BarGraphMaster; //Variavel que seta o BarGraph que vai
controlar este gréafico

//Construtor da classe atual
public BarGraphPanel (} {

//Chama o método que define o layout da janela e inclui os componentes
acima
try {

MontaGUI{) ;

} catch (Exception e} {
System.out.println("Excecaol do BarGraphPanel: " +
e.getMessage () }:
e,printStackTrace();
}

SCADA em Java - P4ag. 59

//Método que chama o BarGraphMaster e conecta na rede como "nome"
public void Conecta (String nome) |

try {
BarGraphMaster = new BarGraph(this, nome);

} catch (Exception e) {
System.out.println("Excecaol do BarGraphPanel: " +
e.getMessage () };
e.printStackTrace () ;

1
}

//Construcdo da GUI
public void MontaGUI{) throws Exception(

//Definigdo do layout geral da janela
this.setLayout (xYLayoutBarGraph) ;
this.setBackground(Color.lightGray) ;
this.setSize (new Dimension (285, 360));

//Definicdo do layout geral da Janela
CampoComponenteServidor. setBackground (Color.white) ;

BotacRegistrar .SetLabel ("Registrar”);
TextoComponente -setText ("Nome do");
TextoComponente?2 .setText ("Sensor: ") ;
BotaoRemover .setlabel ("Remover™) ;
AreaDeTexto -setBackground (Color.white) ;
TextcTaxa .setText ("Taxa:");

CampoTaxa -setText ("0") ;

//Inclusdo dos itens na janela, com respectivas coordenadas e
tamanhos

this.add (TextoComponente, new XYConstraints(5, 147, 60,
12)}: this.add(TextoComponente?2, new XYCenstraints({ 12, 165, 5O,
R this.add {CampoComponenteServidor, new XYConstraints(65, 150, 110,
e this.add (TextoTaxa, new XYConstraints {185, 150G, 35,
=B this.add (CampoTaxa, new XYConstraints(225, 150, 47,
e this.add (BotaoRegistrar, new XYConstraints{ 5, 190, 122,
0 this.add (BotaoRemover, new XYConstraints (150, 190, 122,
ke this.add (AreaDeTexto, new XYConstraints{ 5, 230, 267,
100))

//Seta que os botdes do grafico geram eventos
BotaoRemover .addActionListener (this);
BotaoRegistrar.addActionListener (this);

SCADA em Java - Pag. 60

//Método que calcula o valor em pixel da altura do grafico e associa ao
horarioc de atualizacéo
public void Construir(Ponto pj {

ValorReal = p.ValorAtual;
Minvalor p.ValorMinimo;

il

MaxValor = p.ValoxrMaximo;
Tempo = p.Tempo;
ValorPixel = (int)} (({{ValorReal-Minvalor)/(MaxValor—

MinValor))*altura);
repaint();

//Método que constréi o grafico
public void paint (Graphics q) {

110; //Localizag8o em x do grafico a ser impresso
12; //Localizag&o em y do grafico a ser impresso

1l

int x
int y

//Construcio do efeito 3D do grafico
MontaMoldura (%, vy, g} ;

//Preenchimento da altura
g.setCeolor (Color.red) ;
g.filiRect (x, y+{altura-ValorPixel), largura, ValorPixel);

//Textos de méximo, minimo e wvalor atual
g.setColor (Color.black};
g.drawString ("Maximo: " + CortaCasas (MaxValor), x-100, y+5);
g.drawString ("Minimo: " + CortaCasas (MinValor), x-100,
y+altura+5b);
g.drawString(CortaCasas (ValorReal) + " as " + Tempo, x+55,
v+ {altura-ValorPixel)+5) ;

}

//Método que monta o efeito 3D do gréafico
public void MontaMoldura (int x, int vy, Graphics g){

//Linha cinza

g.setColor (Color.gray);

g.drawLine (-2, y+altura, x-2 . Y207
g.drawlLine (x-2, y-2 , %¥tlargura+l, y-2);

//Linha branca

g.setColor (Color.white};

g.drawLine (x-2 , ytaltura+l, x+largura+l, y+altura+l):
g.drawlLine (x+largura+l, y+altura+l, x+largura+l, v-2):

//Linha preta

g.setColor{Coclor.black);

g.drawlLine(x-1, y+altura, x-1 y V-1)3;
g.drawLine (x-1, y-1 s x+largura-1, y-1};

SCADA em Java - Pag. 61

//Fundo branco
g.setColor (Color.white);
g.fillRect (x, vy, largura, altura):

//Método para lidar com os eventos gerados pelos botdes
public void actionPerformed (ActionEvent e) {

Dados d = new Dados(); //Inicializacao do grupo de dados a serem
passados

//Agdo do botdo 'Registrar?
PR g T T 7 SCADA emJava - Pag. 61

//Fundo branco
g.setColor{Color.white);
g.fillRect(x, v, largura, altura):

//Método para lidar com og eventos gerados pelos botdes
public void actionPerformed(ActionEvent e} {

Dados d = new Dados(); //Inicializacao do grupo de dados a serem
passados

//Acio do botdo 'Registrar'
if {e.getActionCommand{) .compareTo {"Registrar”)==0) {

//Envia os valores para o BarGarphMaster e imprime o resultado

na janela
d.Acao = "registrar";
d.Intervalo = new Float (CampcTaxa.getText()).floatValue();

if (d.Intervalo > 0)

d.TipoAtualizacao = "poramostragem";
else
d.TipoAtualizacao = "porevento";

String resposta =
BarGraphMaster.Registro (CampoComponenteServidor.getText (), d);
AreaDeTexto.append (resposta+"\n");

}

//Acéc do botdo 'Remover'
if {e.getActionCommand () .compareTo{"Remover")==0} {

//Envia os valores para o BarGarphMaster e imprime o resultado

na janela
d.Acao = "remover";
d.Intervalo = new Float (CampoTaxa.getText(}).floatValue();

if {(d.Intervalo > 0)

d.TipoAtualizacao = "poramostragem";
else
d.TipoAtualizacao = "porevento®;

String resposta =
BarGraphMaster.Registro (CampoConponenteServidor.getText (),d);
AreaDeTexto.append(resposta+"\n");
1

SCADA em Java - P&g. 62

6.14. Ciasse Barraph

//Classe BarGraph, que implementa a interface Atualizacces,
//para poder ter seus dados atualizados remotamente

package graphs.BarGraphs;

import java.rmi.*;

import java.rmi.server.*;
import interfaces.*;
import dados.*;

public class BarGraph extends UnicastRemoteCbject
implements Atualizacoes {

//Varidveis gerais da classe atual

static BarGraphPanel frame i //Variével que corresponde &
GUI do BarGraph

static String NomeBarGraphBtual

static int numeroDeRegistros
nimero de registros feitos

null; //Nome que o BarGraph vai ter
0; //Vari&vel gque armazena o

Il

//Contrutor do BarGraph, que chama a classe

//BarGraphPanel, que & a GUT do BarGraph

public BarGraph (BarGraphPanel framel, String nome) throws RemoteException
{

super () ; //Chama o construtor do
UnicastRemoteObject

frame = framel; //Recebe o BarGraphPanel enviado
NomeBarGraphAtual = nome; //Armazena o nome do BarGraphPanel
enviado

//Bloco que pde o BarGraph na rede, para ser localizado
remotamente, através do "nome"

//Definicdo do Gerenciador de Seguranca do RMI
if (System.getSecurityManager() == null)
System.setSecurityManager (new RMISecurityManager (}) ;

//Coloca o BarGraph na rede como "nome"
try {

Naming.rebind(NomeBarGraphAtual, this);

} catch (Exception e) |
System.out.println("Excecaol do " + NomeBarGraphhtual + ":
" + e.getMessage());
e.printStackTrace() ;
}

//Imprime o resultado na janela do BarGraphPanel
frame.AreaDeTexto.append(NomeBarGraphAtual+" na rede!!\n");

SCADA em Java - Pag. 63

//Método que chama a classe Sensor para se inscrever na sua lista
public static String Registro(String nome, Dados d) {

String resposta = null; //Texto que o método retorna

Ponte p = new Ponto(); //Valores que ird receber
para atualizacdo

d.Componente = NomeBarGraphAtual; //Indica o nome do BarGraph

que serd passado para o sensor

//Definicfo do Gerenciador de Seguranca do RMI
if (System.getSecurityManager () == null}
System.setSecurityManager (new RMISecurityManager ()} ;

//Procura o sensor e efetua o registro

try {
Inscricoes objremoto = (Inscricoes) Naming.lookup (home) ;
p = objremoto.Alteralnscricao (d};

//Definicao do texto a ser retornado

if (d.Acao.compareTo ("registrar")==0) {
resposta = NomeBarGraphAtual+” conectado ao " + nome + ".,v;
numeroDeRegistros = numeroDeRegistros + 1;

frame.Construir(p); //Atualiza o aspecto do grafico

} else {
resposta = NomeBarGraphAtual+" retirado do "+nome+" . ";
numeroDeRegistros = numercDeRegistros - 1;

//Verifica se vai zerar o grafico
if {(numeroDeRegistros==0)
frame.Construir(p);

}

} catch (Exception e) {
System.out.println("Excecao? do "+NomeBarGraphAtual4+": " +

e.getMessage ());
e.printStackTrace(};
}

//Retorna texto para indicar suceszo do processo
if (resposta !'= null)
return ("A resposta foi:" + resposta) ;

//Sensor nio foi encontrado

else
return{nome + " nio encontrade!") ;

//Método que implementa a interface Atvalizacoes,
//que permite que o sensor atualize remotamente o grafico
public Object Atualizar(Ponto p) |

frame.Construiri{p);
return ("Atualizagdo feita."):

SCADA em Java - Pag. 64

6.55. Gtassa PrincipalTrendGraph

//Classe PrincipalTrendGraph, que recebe o nome do prompt, e
//inicializa a janela que hospedard o TrendGraph

package graphs.Janelas;
public class PrincipalTrendGraph {
boolean packFrame = false; //Varidvel de validacio da GUI

//Construtor da classe atual
public PrincipalTrendGraph(String nome) {

//Inicializa a janela que contém o TrendGraph
JanelaTrendGraph frame = new JanelaTrendGraph (nome) ;

//Valida a janela
if (packFrame)
frame.pack();
else
frame.validate();
frame.setVisible (true) ;
}

//Método principal da classe
static public void main(String[] args) {

//Inicializa a classe com o nome recebido pelo prompt
new PrincipalTrendGraph(args[0]);

6.16. Ctasse JanelaTrendGraph

//Classe JanelaBarGraph, que chama serve como hospedeira para a classe
//BarGraph, que esta sendo incluida como um Bean

package graphs.Janelas:;

import java.awt.*;

import java.awt.event.*;

import borland.jbcl.layout.*;

import graphs.TrendGraphs.*;

public class JanelaTrendGraph extends Frame{
//Varidveis gerais da classe
XY¥Layout xYLayoutl = new XYLavout();
String titule = null;

TrendGraphPanel janela; //Variavel que indica o BarGraph que vai ser
adicionado & janela

//Construtor da classe atual

SCADA em Java - Pag. 65

public JanelaTrendGraph (String nome) {

titulo = nome;
janela = new TrendGraphPanel();
janela.Conecta(titulo);

//Chama o método que define o layout da janela
try {

MontaGUI ()} ;

} catch (Exception e) {
System.out.println("Excecaol do JanelaTrendGraph: " +
e.getMessage());
e.printStackTrace();
}

1

//Construcdo da GUI
public void MontaGUI{) throws Exception{

//Definicd&o do layout geral da janela
this.setLayout (xYLayoutl) ;
this.setBackground(Color.lightGray);
this.setSize (new Dimension {650, 290));
this.setTitle(titulo);

//Seta que os botdes da janela geram eventos
this.addWindowListener (new WindowBdapter() {
public void windowClosing(WindowEvent e) {
System.exit (0);
}
Fyi

//Adiciona o TrendGraph na janela
this.add(janela);

SCADA em Java - Pag. 66

6.17. Ctasse TrendGraphPanol

//Classe que implementa a GUI do TrendGraph, que estd acertada para ser

usada como Bean

package graphs.TrendGraphs;

import
inmport
import
import
import
import

Java.awt.*;

dados. *;

public

java.awt.event.*;
borland.jbcl.layout.*;
interfaces.*;

java.io.Serializable;

class TrendGraphPanel extends Panel

implements ActionListener,

//Variaveis gerais da classe

Serializable {

XYLayout xYLayoutTrendGraph = new XYLayout(}:;
Button BotacRegistrar = new Button();
Button BotaoRemover = new Button():
Label TextoComponente = new Label ();
Label TextoTaxa = new Label (};
TextField CampoTaxa = new TextField():
TextField CampoComponenteServidor = new TextField();
static TextArea AreaDeTexto = new TextArea();
//Varidveis gerais para o grafico impresso

float MaxValor

coerente
float MinValor =
coerente
float ValorReal =
coerente
int ValorPixel =
int nColunas
int nLinhas
int xPoints|[]
int yPoints|]

String tempos|]
colunas

int x = 118;
int y = 15;
int altura = 120;
int largura = 500;
int xcoluna;

int ylinha ;

boolean bean = true;

modificagdes por Bean

TrendGraph TrendGraphMaster;

100;

//Valor
//valor

10;
5;
new int[nColunas];
new int[nColunas];
new

//Valor maximo do atuador na

unidade

//Valor méximo do atuador na unidade

atual do atuador na unidade
atual do atuador em pixel

//Nimero de colunas do grafico
//Nimero de linhas do grafico
//Coordenadas x das colunas
//Coordenadas y das linhas

String[nColunas]; //Horarios associados &s

//Cooredenada x do grafico

//Cooredenada y do grafico

//Altura em pixel do grafico

//Largura em pixel do grafico

//Disténcia em x entre uma coluna e outra
//Distancia em y entre uma linnha e outra

contrclar este grafico

//Construtor da classe atual
public TrendGraphPanel () {

//Varidvel que indica se est3c sendc feitas

//Varidvel geu seta o TrendGraph que vai

SCADA em Java - Pag. 67

//Chama o método que define o layout da janela e inclui os componentes
acima
try {

MontaGUI () ;

} catch (Exception e) {
System.ocut.println("Excecaol do TrendGraphFrame: " +
e.getMessage());
e.printStackTrace () ;
}

//Método que chama o TrendGraphMaster e conecta na rede como "nome"
public void Conecta(String nome) |

try {
TrendGraphMaster = new TrendGraph (this, nome):

} catch (Exception e) {
System.out.println("Excecaol do BarGraphPanel: " +
e.getMessage(});
e.printStackTrace!();
}

//Propriedades a serem ajustadas por Bean
//Recepcdc do ntmero de colunas
public int getnColunas() {
return nColunas;
}

//Reconstrucio do grafice com o novo numero de colunas
public void setnColunas (int novoNumero) {

nColunas = novoNumero;

bean = true;

repaint () ;

//Recepcdo do nitmero de linhas
public int getnLinhas{) f{
return nLinhas;

}

//Reconstrucdo do grafico com ¢ novo ntmero de linhas
public void setnLinhas(int novoNumero) {

nLinhas = novoNumero:

bean = true;

repaint();

SCADA em Java - Pag. 68

//Construcgdo da GUI
public void MontaGUI{) throws Exception{

//Definicdo do layout geral da janela
this.setLayout(xYLayoutTrendGraph);
this.setBackground(Color.lightGray);
this.setSize (new Dimension (650, 290});

//Definicdo do layout geral da Janela
CampoComponenteServidor.setBackground(Color.white);

BotaoRegistrar .setLabel {"Registrar™):
TextoComponente .setText ("Nome do Sensor:");
BotaoRemover .setlabel ("Remover™) ;
AreaDeTexto -setBackground (Color.white) ;
TextoTaxa .setText ("Taxa:") ;

CampoTaxa .setText ("0O");

//Inclusdo dos itens na janela, com respectivas coordenadas e
tamanhos

this.add (TextoComponente, new XYConstraints(10, 160, 99,
AR this.add{CampoComponenteServidor, new XYConstraints(10, 184, 180,
i this.add(TextoTaxa, new XYConstraints (210, 160, 42,
e this.add (CampoTaxa, new XYConstraints (210, 184, 47,
| A this.add(BotaoRegistrar, new XYConstraints(10, 225, 122,
Sk this.add (BotaoRemover, new XYConstraints (140, 225, 122,
0 this.add (AreaDeTexto, new XY¥Constraints (270, 160, 366,
96));

//Seta que os botdes do grafico geram eventos
BotacRemover .addActionListener (this);
BotaoRegistrar.addActionListener(this);

//Método que calcula o valor em pixel da altura do grafico e associa ao
horaric de atualizacdo
public void Construir(Ponto p) {

ValorReal = p.ValorAtual;

MinValor = p.ValorMinimo;

MaxValor = p.ValorMaximo;

ValorPixel = (int) { ((ValorReal~MinValor)/ (MaxValor-

MinValor)) *altura) ;

//Desloca os pontos para a direita, para incluir o novoe ponto
for (int i=nColunas-1;i>0;i--){
yPoints[il = yPoints[i-1];
tempos[i] = tempos[i-1];
}

tempos[0] = p.Tempo; //Guarda o horario do ponto
atual

SCADA em Java - P4g. 69

yPoints[0] = y+altura - ValorPixel; //Pde o ponto atual na altura

certa do grafico
repaint(); //Reconstréi o grafico

//Método que constréi o grafico
public void paint (Graphics g)

xcoluna largura / (nColunas-1); //Definigédo da largura das

cclunas

ylinha altura / (nLinhas-1)}; //Definicdo da altura das

linhas

//Inicializa as coordenadas dos pontos se for a primeira vez dque
//o grafico estd sendo construido com o ntimero de colunas e linhas
if (bean == true) |{
for (int i=0; i < nColunas; i++) {
xPoints[i] = x + xcoluna*i;
yPoints[i] = y + altura;
tempos [i] = "00:00:007";
}
bean = false;

}

//Construcéo do efeito 3D do grafico
MontaMoldura (g) ;

//Tracado da linha
g.setColor{Color.red);
g.drawPolyline (xPoints, yPoints, nColunas) ;

//Textos de maximo, minimo, intermedidrios
g.setColor (Color.black);
g.drawString {"Mdximo: "+MaxValor, x-110, y+5);
g.drawString (" Minimo: "+MinValor, x-110, y+altura+5);
for (int i=1;i<=nLinhas-2;i++){
g.drawString(CortaCasas (MinValor + ((MaxValor-
MinValor)/{nLinhas-1})*i), x-60, y+5+ {ylinha* (nLinhas-1-1)));
}

//Textos dos tempos
for (int i=0; i < nColunas; i++)
g.drawString (tempos[il], (x-25)+i*xcoluna, y+altura+l5s);

//Método que monta o efeito 3D do grafico
public void MontaMoldura (Graphics g){

altura + 1;
largqura + 1;

int alt
int larg

//Linha c¢inza
g.setColor(Color.gray);

g.drawkine (x-2, y+alt, x-2 y ¥-203
g.drawlLine (x-2, y-2 , x+larg+l, ¥=2);

SCADA em Java - Pag. 70

//Linha branca

g.setColor (Color.white);

g.drawlLine (x-2 r y+talt+l, x+larg+l, y+alt+l);
g.drawbine (x+larg+l, y+alt+l, x+larg+l, y-2);

//Linha preta

g.setColor (Ceolor.black);

g.drawline (x-1, y+alt ,x-1 ; v-1):
g.drawlLine (x-1, y-1 (xXtlarg-1, y-1);

//Fundo branco
g.setColor (Color.white)
g.fillRect (x, y, largura, altura);

//Grid azul-claro
g.setColor (Color.cyan) ;
for (int i=0; i<nColunas; i++) {
g.drawline (x+i*xcoluna, y ; X+i*xcoluna , ytaltura);
}
for (int i=0; i<nLinhas; i++) {
g.drawLine (x ¢ yti*ylinha, x+largura, y+i*ylinha);

}

//Método para lidar com os eventos gerados pelos botdes
public void actionPerformed (ActionEvent e) |

Dados d = new Dados(); //Inicializacao do grupo de dados a serem
passados

//Acdo do botdoc 'Registrar
if {e.getActionCommand().compareTo{"Registrar")==0) {

//Envia os valores para o TrendGarphMaster e imprime o
resultado na janela

d.Acao = "registrar™;

d.Intervalo = new Float(CampoTaxa.getText ()).floatValue ();

if (d.Intervalo > 0)

d.TipoAtualizacao = "poramostragem®;
else
d.TipoAtualizacao = "porevento";

String resposta =
TrendGraphMaster.Registro(CampoComponenteServidor.getText(),d);
AreaDeTexto.append {resposta+™\n") ;
}

//Acdo do botdo 'Remover!
if (e.getActionCommand () .compareTo ("Remover")==0) {

//Envia os valores para o TrendGarphMaster e imprime o
resultado na janela

d.Acac = "remover";

d.Intervalo = new Float {CampoTaxa.getText ()).floatValue();

if (d.Intervalc > 0)
d.TipoAtualizacao = "poramostragem";

SCADA em Java - Pag. 71

else
d.TipoAtualizacao = "porevento";

String resposta =
TrendGraphMaster.Registro(CampoComponenteServidor.getText(),d);
AreaDeTexto.append(resposta+"\n");

bean = true; //Indica que a préxima vez & preciso inicializar
0S pontos

}

//Método que corta as casas do valor impresso na tela
public static String CortaCasas (float Valor) {

int Inteire = (int) (Valor) ;

int Casas = (int) ((valor - ({float) (Inteiro))) * 100);
float Resultado = ((float) (Inteiro}) + (({float) (Casas))/100};
return ("" + Resultado):

6.18. Glasse TrendGraph

//Classe TrendGraph, que implementa a interface Atualizacoes,
//para poder ter seus dados atualizados remotamente

package graphs.TrendGraphs;

import java.rmi.*;

import java.rmi.server.*;
import interfaces.*:
import dados.*;

public class TrendGraph extends UnicastRemoteObiject
implements Atualizacoes {

//Varidveis gerais da classe atual
static TrendGraphPanel frame E //Varidvel que corresponde i

GUI do TrendGraph
static String NomeTrendGraphAtual

ter
static int numerobeRegistros = 0; //Varidvel que armazena o

nimero de registros feitos

null; //Nome que o TrendGraph vai

//Contrutor do TrendGraph, que chama a classe

//TrendGraphFrame, que & a GUI do TrendGraph

public TrendGraph (TrendGraphPanel framel, String nome) throws
RemoteException |

super () ; //Chama o construtor do UnicastRemoteObject

frame = framel; //Recebe o TrendGraphPanel enviado

SCADA em Java - Pag. 72

NomeTrendGraphAtual = nome; //Armazena o nome do BarGraphPanel
enviado

//Bloco que pde o TrendGraph na rede, para ser localizado
remotamente, através do "nome"

//Definicdo do Gerenciador de Seguranc¢a do RMI
if (System.getSecurityManager () == null)
System.setSecurityManager {new RMISecurityManager(});

//Coloca o TrendGraph na rede como "nome"
try |

Naming.rebind(NomeTrendGraphAtual, this);

} catch (Exception e) {
System.out.println{"Excecao? do " + NomeTrendGraphAtual +
": " + e.getMessage());
e.printStackTrace();
}

//Imprime o resultado na janela do TrendGraphPanel
frame.AreaDeTexto.append(NomeTrendGraphAtual+" na rede!t\n");

//Método que chama a classe Sensor para se inscrever na sua lista
public static String Registro(String nome, Dados d) {

String resposta = null: //Texto que o método
retorna

Ponto p = new Ponto(); //Valores que ird receber
para atualizacdo

d.Componente = NomeTrendGraphAtual; //Indica o nome do

TrendGraph que sera passado para o sensor

//Definicdo do Gerenciador de Seguranca do RMI
if (System.getSecurityManager () == null)
System.setSecurityManager (new RMISecurityManager()):

//Procura o sensor e efetua o registro

try {
Inscricoes objremoto = (Inscricoes) Naming.lookup (nome) ;
P = objremoto.Alteralnscricao(d);

//Definicac do texto a ser retornado
if (d.Acao.compareTo("registrar“)==0) {
resposta = NomeTrendGraphAtual + " conectado ao " + nome +
H n,
numerobDeRegistros = numeroDeRegistros + 1;
frame.Construir(p); //Atualiza o aspecto do grafico
} else {
resposta = NomeTrendGraphAtual + " retirado do " + nome
+ ll'.ﬂ’.

numercDeRegistros = numeroDeRegistros - 1;

//Verifica se vai zerar o grafico

SCADA em Java - Pag. 73

if {numeroDeRegistros == 0) {

//Loop para zerar o(s) ponto{s)
for (int i=90;i<frame.nColunas;i++)
frame.Construir(p);

}

} catch (Exception e) |
System.out.println("Excecaocl do "+NomeTrendGraphAtual+": "

+ e.getMessage());
e.printStackTrace();

}

//Retorna texto para indicar sucesso do processo

if (resposta != null)
return("A xesposta foi:" + resposta):;

//Sensor ndo foi encontrado

else
return(nome + " nio encontrado!™);

//Método que implementa a interface Atualizacoes,
//que permite que o sensor atualize remotamente o grafico

public Object Atualizar{Ponto p) {

frame.Construir (p);
return ("Atualizacio feita.™);

SCADA em Java - P4g. 74

7. Bibliografia

e LINDEN, Peter van der. Just Java. Sao Paulo: Makron Books, 1998-07-02

¢ VALLE, André, GUIMARAES Claudia. Java Manual de introducéo. Rio de
Janeiro: Axcet Books do Brasil. 1996

¢ VANHELSUWE, Laurence. Mastering JavaBeans. San Francisco: Sybex, 1997

Homepages:

e hitp://iwww.java.sun.com/ - Web site oficial da Linguagem Java e topicos
relacionados a4 mesma, pela Sun Microsystems

. http:llwww.iavasoft.comldocslbooksltutoriaIlindex.html - Web site contendo um

Tutorial sobre os principais aspectos da linguagem
Java, pela Sun Microsystems

 http:/iwww.iinet.net. au/~ianw/ - Web site sobre informagdo de SCADA

